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The Maximum Likelihood Estimator (MLE)
Let X1, . . . ,Xn be i.i.d in X from a probability distribution P0.

Statistical inference :
propose a model (Pθ, θ ∈ Θ), assume P0 = Pθ0 .
compute θ̂n = θ̂n(X1, . . . ,Xn).

Letting pθ denote the density of Pθ, then

θ̂MLE
n = arg max

θ∈Θ
Ln(θ), where Ln(θ) =

n∏
i=1

pθ(Xi).

Example : P(m,σ) = N (m, σ2) then

m̂ =
1
n

n∑
i=1

Xi and σ̂2 =
1
n

n∑
i=1

(Xi − m̂)2.
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MLE not unique / not consistent

Example :

pθ(x) =
exp(−|x − θ|)
2
√
π|x − θ|

,

Ln(θ) =
exp (−

∑n
i=1 |Xi − θ|)

(2
√
π)n
∏n

i=1

√
|Xi − θ|

.
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MLE fails in the presence of outliers
What is an outlier ?
Huber proposed the contamination model : with probability ε,
Xi is not drawn from Pθ0 but from Q that can be anything :

P0 = (1− ε)Pθ0 + εQ.

Example : Pθ = Unif [0, θ], then

Ln(θ) =
1
θn

n∏
i=1

1{0≤Xi≤θ} ⇒ θ̂ = max
1≤i≤n

Xi .

In the case of the following contamination, the MLE is
extremely far from the truth :

P0 = (1− ε).Unif [0, 1] + ε.N (1010, 1)...

Pierre Alquier, RIKEN AIP Minimum Distance Estimation



Some problems with the likelihood and how to fix them
Maximum Mean Discrepancy (MMD)

A Bayesian( ?) point of view

Some problems with the likelihood
Minimum Distance Estimation (MDE)

Minimum Distance Estimation

Minimum Distance Estimation (MDE)

Let d(·, ·) be a metric on probability distributions.

θ̂d := arg min
θ∈Θ

d
(
Pθ, P̂n

)
where P̂n :=

1
n

n∑
i=1

δXi
.

Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics.

Idea : MDE with an adequate d leads to robust estimation.

Bickel, P. J. (1976). Another look at robustness : a review of reviews and some new
developments. Scandinavian Journal of Statistics. Discussion by Sture Holm.

Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estimation. JASA.

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov’s
entropy. Annals of Statistics.
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Integral Probability Semimetrics

Integral Probability Semimetrics (IPS)

Let F be a set of real-valued, measurable functions and put

dF(P ,Q) = sup
f ∈F

∣∣∣∣∣EX∼P [f (X )]− EX∼Q [f (X )]

∣∣∣∣∣.
Müller, A. (1997). Integral probability metrics and their generating classes of functions. Applied
Probability.

assumptions required in order to ensure that
dF(P ,Q) = 0⇒ P = Q (that is, dF is a metric).
assumptions required in order to ensure that dF < +∞.
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Non-asymptotic bound for MDE
Theorem 1

X1, . . . ,Xn i.i.d from P0,
for any f ∈ F , supx∈X |f (x)| ≤ 1.

Then
E
[
dF(Pθ̂dF

,P0)
]
≤ inf

θ∈Θ
dF(Pθ,P0) + 4.Radn(F).

Rademacher complexity

Radn(F) := sup
P

EY1,...,Yn∼P Eε1,...,εn

[
sup
f ∈F

1
n

n∑
i=1

εi f (Yi)

]
.

where ε1, . . . , εn are i.i.d Rademacher variables :
P(ε1 = 1) = P(ε1 = −1) = 1/2.
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Example 1 : set of indicators

1A(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Image from Wikipedia.

Reminder - Vapnik-Chervonenkis dimension
Assume that F = {1A,A ∈ A} for some A ⊆ P(X ),

SF(x1, . . . , xn) := {(f (x1), . . . , f (xn)), f ∈ F},
VC(F) := max {n : ∃x1, . . . , xn, |SF(x1, . . . , xn)| = 2n} .

Theorem (Bartlett and Mendelson)

Radn(F) ≤
√

2.VC(F) log(n + 1)

n
.

Bartlett, P. L. & Mendelson, S. (2002). Rademacher and Gaussian complexities : Risk bounds and
structural results. JMLR.
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Example 1 : KS and TV distances
Two classical examples :
A = {all measurable sets in X}, then dF(·, ·) is the total
variation distance TV(·, ·).

VC(F) = +∞ when |X | = +∞,
in general, Radn(F) 9 0.

X = R, A = {(−∞, x ] , x ∈ R}, then dF(·, ·) is the
Kolmogorov-Smirnov distance KS(·, ·).

KS distance was actually proposed by S. Holm for robust
estimation,
VC(F) = 1.

E
[
KS(Pθ̂KS

,P0)
]
≤ inf

θ∈Θ
KS(Pθ,P0) + 4.

√
2 log(n + 1)

n
.
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Example 2 : Maximum Mean Discrepancy (MMD)
Let (H, 〈·, ·〉H) be a RKHS with kernel

k(x , y) = 〈φ(x), φ(y)〉H .

If ‖φ(x)‖H = k(x , x) ≤ 1 then EX∼P [φ(X )] is well-defined .

The map P 7→ EX∼P [φ(X )] is one-to-one if k is characteristic.

For example, k(x , y) = exp(−‖x − y‖2/γ2) works.

Definition - MMD

MMDk(P ,Q) = sup
f ∈ H
‖f ‖H ≤ 1

∣∣∣∣∣EX∼P [f (X )]− EX∼Q [f (X )]

∣∣∣∣∣
=

∥∥∥∥EX∼P [φ(X )]− EX∼Q [φ(X )]

∥∥∥∥
H
.
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Example 2 : MMD

F = {f ∈ H : ‖f ‖H ≤ 1} ⇒ Radn(F) ≤
√

supx k(x , x)

n
.

Theorem 2
For k bounded by 1 and characteristic,

E
[
MMDk(Pθ̂MMDk

,P0)
]
≤ inf

θ∈Θ
MMDk(Pθ,P0) +

2√
n
.

Joint work with Badr-Eddine Chérief-
Abdellatif (Oxford).

Chérief-Abdellatif, B.-E. and Alquier, P. Finite Sample
Properties of Parametric MMD Estimation : Robustness
to Misspecification and Dependence. Bernoulli, 2022.
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Example 3 : Wasserstein
Another classical metric belongs to the IPS family :

Wδ(P ,Q) = sup
f : X → R
Lip(f ) ≤ 1

∣∣∣∣∣EX∼P [f (X )]− EX∼Q [f (X )]

∣∣∣∣∣
where Lip(f ) := supx 6=y |f (x)− f (y)|/δ(x , y).

In general, Radn(F) 9 0, so will not converge in full
generality as with MMD and KS.
However, nice results can be proven under additional
assumptions :

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). On parameter estimation with the
Wasserstein distance. Information and Inference : A Journal of the IMA.
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MDE and robustness : Huber’s contamination

Reminder

E
[
dF(Pθ̂dF

,P0)
]
≤ inf

θ∈Θ
dF(Pθ,P0) + 4.Radn(F).

Huber’s contamination model : P0 = (1− ε)Pθ0 + εQ.

dF (Pθ0 ,P0) = sup
f∈F

∣∣EX∼Pθ0
f (X )− (1− ε)EX∼Pθ0

f (X )− εEX∼Q f (X )
∣∣

= sup
f∈F

∣∣εEX∼Pθ0
f (X )− εEX∼Q f (X )

∣∣
= ε.dF (Pθ0 ,Q) ≤ 2ε if for any f ∈ F , sup

x
|f (x)| ≤ 1

Corollary - in Huber’s contamination model

E
[
dF(Pθ̂dF

,Pθ0)
]
≤ 4ε + 4.Radn(F).

Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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MDE and robustness : toy experiment

Model : N (θ, 1), X1, . . . ,Xn i.i.d N (θ0, 1), n = 100 and we
repeat the exp. 200 times. Kernel k(x , y) = exp(−|x − y |).

θ̂MLE θ̂MMDk
θ̂KS

mean abs. error 0.081 0.094 0.088

Now, ε = 2% of the observations drawn from a Cauchy.

mean abs. error 0.276 0.095 0.088

Now, ε = 1% are replaced by 1, 000.

mean abs. error 10.008 0.088 0.082
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Reminder

k(x , x ′) = 〈φ(x), φ(x ′)〉H, k bounded by 1 and characteristic.

Reminder - MMD

MMDk(P ,Q) = sup
f ∈ H
‖f ‖H ≤ 1

∣∣∣∣∣EX∼P [f (X )]− EX∼Q [f (X )]

∣∣∣∣∣
=

∥∥∥∥EX∼P [φ(X )]− EX∼Q [φ(X )]

∥∥∥∥
H
.
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More explicit formulas for the MMD

We actually have

MMD2
k(Pθ, P̂n) = EX ,X ′∼Pθ

[k(X ,X ′)]−2
n

n∑
i=1

EX∼Pθ
[k(Xi ,X )]

+
1
n2

∑
1≤i ,j≤n

k(Xi ,Xj)
and so

∇θMMD2
k(Pθ, P̂n)

= 2EX ,X ′∼Pθ

{[
k(X ,X ′)− 1

n

n∑
i=1

k(Xi ,X )

]
∇θ[log pθ(X )]

}

that can be approximated by sampling from Pθ.
Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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Generative Adversarial Networks (GAN, 1/2)

Generative model X ∼ Pθ :
U ∼ Unif[0, 1]d ,
X = Fθ(U) where Fθ is some
NN with weights θ.

Dziugaite, G. K., Roy, D. M. & Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. UAI.

Li, Y., Swersky, K. & Zemel, R. (2015). Generative Moment Matching Networks. ICML.

→ proposed to minimize the MMD to learn θ.
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GAN (2/2)

Results from Dziugaite et al. (2015).
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Inference for Systems of SDEs (1/2)

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv :1906.05944.

dXt = b(Xt , θ1)dt + σ(Xt , θ2)dWt

easy to sample from the model with a given θ = (θ1, θ2),
they propose a method to approximate the gradient of
the MMD criterion.
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Inference for Systems of SDEs (2/2)

Example in a (stochastic) Lotka-Volterra model.

Results from Briol et al. (2019) : compare MMD minimization
to Wasserstein minimization.
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Regression

problem with regression : we want to specify and estimate
a parametric model Pθ(X ) for Y |X . MMD requires to
specify a model for (X ,Y ).
natural idea : estimate the distribution of X by
1
n

∑n
i=1 δXi

and use the MMD procedure on Pθ(X ).
the previous theory shows directly that we estimate the
distribution of (X ,Y ) consistently.
it is far more difficult to prove that we estimate the
distribution of Y |X .

Joint work with M. Gerber (Bristol).

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via
Maximum Mean Discrepancy. Preprint arXiv.

Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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Copulas

another semi-parametric
model, MMD approach
can be adapted.
asymptotic theory + R
package.

With B.-E. Chérief-Abdellatif (Oxford), J.-D. Fermanian
(ENSAE Paris), A. Derumigny (TU Delft).

Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and
Fermanian, J.-D. Estimation of copulas via Maximum
Mean Discrepancy. JASA, to appear.
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Generalized posteriors

Posterior

π(θ|X1, . . . ,Xn) ∝ Ln(θ)π(θ).

Generalized posterior

π̂β,Rn(θ) ∝ exp(−β.Rn(θ))π(θ).

old idea in ML (PAC-Bayes, forecasting with expert
advice...) and in statistics (Gibbs posteriors...)
popularized / extended and studied by :

Bissiri, P. G., Holmes, C. C. & Walker, S. G. (2016). A general framework for updating belief
distributions. JRSS-B.

Knoblauch, J., Jewson, J. & Damoulas, T. (2022). An Optimization-centric View on Bayes’
Rule : Reviewing and Generalizing Variational Inference. JMLR (to appear).

Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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Generalizing the posterior with IPS

Generalized posterior with IPS

π̂β,Rn(θ) ∝ exp(−β.dF(Pθ, P̂n))π(θ).

in the MMD case : non-asymptotic result in

Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes : Robust Bayesian Estimation via
Maximum Mean Discrepancy. Proceedings of AABI.

computation via variational approximations.

Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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Reminder on ABC

Approximate Bayesian Computation (ABC)

input : sample X n
1 = (X1, . . . ,Xn), model (Pθ, θ ∈ Θ), prior

π, statistic S , distance δ and threshold ε.
(i) sample θ ∼ π,
(ii) sample Y n

1 = (Y1, . . . ,Yn) i.i.d. from Pθ :
if δ(S(X n

1 ),S(Y
n
1 )) ≤ ε return θ,

else goto (i).

how close is the distribution of the output to the posterior
π(θ|X1, . . . ,Xn) ?
reverse point of view : what are the properties of the
“generalized posterior” we sample from ?

Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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ABC with IPS
Here, we study the situation :

S(x1, . . . , xn) = 1
n

∑n
i=1 δxi the empirical distribution,

δ(P ,Q) = dF(P ,Q).
IPS–ABC
input : sample X n

1 = (X1, . . . ,Xn), model (Pθ, θ ∈ Θ), prior
π, set of functions F and threshold ε. Put P̂n = 1

n

∑n
i=1 δXi

.
(i) sample θ ∼ π,
(ii) sample Y n

1 = (Y1, . . . ,Yn) i.i.d. from Pθ and put
P̂Y
n = 1

n

∑n
i=1 δYi

,
if dF (P̂n, P̂

Y
n ) ≤ ε return θ,

else goto (i).

Notation : the output ϑ ∼ π̂Fn,ε(·).
Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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Properties of π̂Fn,ε(·)

In a forthcoming joint paper
with S. Legramanti (University
of Bergamo) and D. Durante
(Bocconi University, Milan) we
study 3 questions :

1 π̂Fn,ε(θ)
?−−→

ε↘?
π(θ|X n

1 ).

2 π̂Fn,ε(θ)
?−−−→

n→∞
?

3 π̂Fn,εn(·) ?−−−→
n→∞

δθ0 if P0 = Pθ0 .

Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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Contraction of the ABC posterior

ε∗ := inf
θ∈Θ

dF (Pθ,P0).

Theorem 3
Assume :

for all ε > 0, π({θ : dF (Pθ,P0) ≤ ε∗ + ε}) ≥ cεd .

∀f ∈ F , supx∈X |f (x)| ≤ 1.

Radn(F) −−−→
n→∞

0.

Let εn be any sequence such that εn/Radn(F)→∞ and nε2n →∞.
Then, with probability → 1 on the sample, for any Mn →∞,

π̂Fn,ε∗+εn

dF (Pθ,P0) ≤ ε∗ +
4εn
3

+ Radn(F) +

√
log Mn

εdn

n

 ≥ 1− 2.3d

cMn
.

Pierre Alquier, RIKEN AIP Minimum Distance Estimation
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La fin

終わり

ありがとう ございます。
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