Machine learning theory for time series Exponential inequalities for nonstationary Markov chains

CIMFAV seminar January 16, 2019

1 Short introduction to machine learning theory

2 Machine learning and time series

- Machine learning & stationary time series
- Nonstationary Markov chains

Main ingredients :

• observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - \rightarrow usually i.i.d from an unknown distribution P...

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - \rightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors ($f_{ heta}, heta \in \Theta$)

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - \rightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors ($f_{ heta}, heta \in \Theta$)
 - $\rightarrow f_{\theta}(X)$ meant to predict Y.

Main ingredients :

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - \rightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors ($f_{ heta}, heta \in \Theta$)
 - $\rightarrow f_{\theta}(X)$ meant to predict Y.
- \bullet A loss function ℓ

 $\rightarrow \ell(y'-y)$ incurred by predicting y' while the truth is y.

Main ingredients :

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - \rightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors ($f_{ heta}, heta \in \Theta$)
 - $\rightarrow f_{\theta}(X)$ meant to predict Y.
- A loss function ℓ

 $\rightarrow \ell(y' - y)$ incurred by predicting y' while the truth is y. • the risk $R(\theta)$

Main ingredients :

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - ightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors ($f_{ heta}, heta \in \Theta$)
 - $\rightarrow f_{\theta}(X)$ meant to predict Y.
- A loss function ℓ

 $\rightarrow \ell(y'-y)$ incurred by predicting y' while the truth is y.

• the risk $R(\theta)$

 $\rightarrow R(\theta) = \mathbb{E}_{(X,Y)\sim P}[\ell(f_{\theta}(X) - Y)].$ Not observable.

Main ingredients :

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - ightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors ($f_{ heta}, heta \in \Theta$)
 - $\rightarrow f_{\theta}(X)$ meant to predict Y.
- A loss function ℓ

 $\rightarrow \ell(y'-y)$ incurred by predicting y' while the truth is y.

• the risk $R(\theta)$

 $\rightarrow R(\theta) = \mathbb{E}_{(X,Y)\sim P}[\ell(f_{\theta}(X) - Y)].$ Not observable.

• an empirical proxy $r(\theta)$ for $R(\theta)$

Main ingredients :

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - ightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors $(f_{ heta}, heta \in \Theta)$
 - $\rightarrow f_{\theta}(X)$ meant to predict Y.
- A loss function ℓ

 $\rightarrow \ell(y' - y)$ incurred by predicting y' while the truth is y. • the risk $R(\theta)$

 $\rightarrow R(\theta) = \mathbb{E}_{(X,Y)\sim P}[\ell(f_{\theta}(X) - Y)].$ Not observable.

- an empirical proxy $r(\theta)$ for $R(\theta)$ $for example, r(\theta) = \frac{1}{2} \sum_{n=0}^{n} \ell(f_n(X_n))$
 - \rightarrow for example $r(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i) Y_i).$
- empirical risk minimizer $\hat{\theta}$

Main ingredients :

- observations : (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n)
 - ightarrow usually i.i.d from an unknown distribution P...
- a restricted set of predictors $(f_{ heta}, heta \in \Theta)$
 - $\rightarrow f_{\theta}(X)$ meant to predict Y.
- A loss function ℓ

 $\rightarrow \ell(y' - y)$ incurred by predicting y' while the truth is y. • the risk $R(\theta)$

 $\rightarrow R(\theta) = \mathbb{E}_{(X,Y)\sim P}[\ell(f_{\theta}(X) - Y)].$ Not observable.

- an empirical proxy $r(\theta)$ for $R(\theta)$
 - \rightarrow for example $r(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i) Y_i).$
- empirical risk minimizer $\hat{\theta}$

$$ightarrow \hat{ heta} = \operatorname*{argmin}_{ heta \in \Theta} r(heta).$$

Sub-gamma random variables

Definition

 \mathcal{T} is said to be sub-gamma iff $\exists (v, w)$ such that $\forall k \geq 2$,

$$\mathbb{E}\left(|T|^k\right) \leq \frac{k! v w^{k-2}}{2}.$$

Sub-gamma random variables

Definition

 \mathcal{T} is said to be sub-gamma iff $\exists (v, w)$ such that $\forall k \geq 2$,

$$\mathbb{E}\left(|T|^k\right) \leq \frac{k! v w^{k-2}}{2}.$$

Examples :

•
$$T \sim \Gamma(a, b)$$
, holds with $(v, w) = (ab^2, b)$.

Sub-gamma random variables

Definition

 \mathcal{T} is said to be sub-gamma iff $\exists (v, w)$ such that $\forall k \geq 2$,

$$\mathbb{E}\left(|T|^k\right) \leq \frac{k! v w^{k-2}}{2}.$$

Examples :

- $T \sim \Gamma(a, b)$, holds with $(v, w) = (ab^2, b)$.
- any Z with $\mathbb{P}(|Z| \ge t) \le \mathbb{P}(|T| \ge t).$

Bernstein's inequality

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq \exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right).$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq\exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right)$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq \exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right).$$

$$\mathbb{P}\Big[R(\theta) - r(\theta) > t\Big] = \mathbb{P}\bigg\{\exp\left[s\left(R(\theta) - r(\theta)\right)\right] > \exp(st)\bigg\}$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq \exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right).$$

$$\mathbb{P}\Big[R(heta) - r(heta) > t\Big] \le \mathbb{E}\expigg[s\left(R(heta) - r(heta)
ight) - stigg]$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq \exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right).$$

$$\mathbb{P}\Big[R(\theta) - r(\theta) > t\Big] \leq \mathbb{E}\exp\left[\frac{s}{n}\left(\sum_{i=1}^{n}[T_i - \mathbb{E}T_i]\right) - st\right]$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq\exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right)$$

$$\mathbb{P}\Big[R(\theta) - r(\theta) > t\Big] \leq \mathbb{E}\exp\left[\frac{s}{n}\left(\sum_{i=1}^{n}[T_i - \mathbb{E}T_i]\right) - st\right]$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq\exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right)$$

$$\mathbb{P}\Big[R(\theta) - r(\theta) > t\Big] \leq \exp\left[\frac{vs^2}{2(n - ws)} - st\right]$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq \exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right).$$

$$\mathbb{P}\Big[R(\theta) - r(\theta) > t\Big] \le \exp\Bigg[rac{vs^2}{2(n-ws)} - st\Bigg]$$

Theorem

Let T_1, \ldots, T_n be i.i.d and (v, w)-sub-gamma random variables. Then, $\forall \zeta \in (0, 1/w)$,

$$\mathbb{E}\exp\left(\zeta\sum_{i=1}^{n}[T_{i}-\mathbb{E}T_{i}]\right)\leq \exp\left(\frac{nv\zeta^{2}}{2(1-w\zeta)}\right).$$

$$\mathbb{P}\Big[|R(\theta) - r(\theta)| > t\Big] \le 2\exp\left[\frac{vs^2}{2(n-ws)} - st
ight]$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists heta \in \Theta, \ |R(heta) - r(heta)| > t\Big] \ = \ \mathbb{P}\Bigg[igcup_{ heta \in \Theta} \Big\{ |R(heta) - r(heta)| \geq t \Big\}\Bigg]$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, |R(\theta) - r(\theta)| > t\Big] \leq \sum_{\theta \in \Theta} \mathbb{P}\bigg[|R(\theta) - r(\theta)| \geq t\bigg]$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, \ |R(\theta) - r(\theta)| > t\Big] \le 2|\Theta| \exp\left(\frac{vs^2}{2(n-ws)} - st\right)$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, \ |R(\theta) - r(\theta)| > t\Big] \le 2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)$$

On the complement,

$$R(\hat{ heta}) \leq r(\hat{ heta}) + t$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, \ |R(\theta) - r(\theta)| > t\Big] \le 2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)$$

On the complement, $\forall \theta_0$,

$$R(\hat{ heta}) \leq r(\hat{ heta}) + t$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, \ |R(\theta) - r(\theta)| > t\Big] \le 2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)$$

On the complement, $\forall \theta_0$,

$$R(\hat{\theta}) \leq r(\theta_0) + t$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, \ |R(\theta) - r(\theta)| > t\Big] \le 2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)$$

On the complement, $\forall \theta_0$,

$$R(\hat{\theta}) \leq R(\theta_0) + 2t$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, \ |R(\theta) - r(\theta)| > t\Big] \le 2|\Theta| \exp\left(\frac{v s^2}{2(n - ws)} - st\right)$$

On the complement,

$$R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\theta) + 2t$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, |R(\theta) - r(\theta)| > t\Big] \leq \underbrace{2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)}_{=\alpha}$$

On the complement,

$$R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\Theta) + \frac{vs}{n - ws} + \frac{2\log \frac{2|\Theta|}{\alpha}}{s}$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, |R(\theta) - r(\theta)| > t\Big] \leq \underbrace{2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)}_{=\alpha}$$

On the complement, for $s = [n/(2w)] \wedge \sqrt{(n/v) \log(2|\Theta|/\alpha)}$,

$$R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\Theta) + \frac{vs}{n - ws} + \frac{2\log \frac{2|\Theta|}{\alpha}}{s}$$

Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, |R(\theta) - r(\theta)| > t\Big] \leq \underbrace{2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)}_{=\alpha}$$

On the complement,

we obtain :

Theorem

With probability at least $1 - \alpha$,

$$R(\hat{ heta}) \leq \min_{ heta \in \Theta} R(heta) + 2\sqrt{rac{v\lograc{2|\Theta|}{lpha}}{n}} ee rac{2w\lograc{2|\Theta|}{lpha}}{n}.$$

Pierre Alquier

Machine learning theory for time series
Finite set of predictors and union bound

$$\mathbb{P}\Big[\exists \theta \in \Theta, |R(\theta) - r(\theta)| > t\Big] \leq \underbrace{2|\Theta| \exp\left(\frac{vs^2}{2(n - ws)} - st\right)}_{=\alpha}$$

On the complement,

we obtain :

Theorem

With proba. at least $1-\alpha,$ with α not rediculously small,

$$R(\hat{ heta}) \leq \min_{ heta \in \Theta} R(heta) + 2\sqrt{rac{
u \log rac{2|\Theta|}{lpha}}{n}}$$

Infinite parameter set

Θ compact $\Rightarrow \exists$ a finite $\Theta^{(\varepsilon)}$ such that

$$\forall \theta \in \Theta, \exists \theta' \in \Theta^{(\varepsilon)} \text{ with } \delta(\theta, \theta') \leq \varepsilon.$$

Infinite parameter set (image from Wikipedia)

 Θ compact $\Rightarrow \exists$ a finite $\Theta^{(\varepsilon)}$ such that

 $\forall \theta \in \Theta, \exists \theta' \in \Theta^{(\varepsilon)} \text{ with } \delta(\theta, \theta') \leq \varepsilon.$

Infinite parameter set

 Θ compact $\Rightarrow \exists$ a finite $\Theta^{(\varepsilon)}$ such that

$$\forall \theta \in \Theta, \ \exists \theta' \in \Theta^{(\varepsilon)} \text{ with } \delta(\theta, \theta') \leq \varepsilon.$$

Assume $\theta \mapsto \ell(f_{\theta}(X) - Y)$ is a.s. *L*-Lipschitz w.r.t $\delta(\cdot, \cdot)$, then

$$R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\theta) + 2L\varepsilon + 2\sqrt{\frac{v \log \frac{2|\Theta(\varepsilon)|}{\alpha}}{n}}$$

Infinite parameter set

 Θ compact $\Rightarrow \exists$ a finite $\Theta^{(\varepsilon)}$ such that

$$\forall \theta \in \Theta, \ \exists \theta' \in \Theta^{(\varepsilon)} \text{ with } \delta(\theta, \theta') \leq \varepsilon.$$

Example : in the finite dimensional case, there is Θ_{ε} with

 $|\Theta^{(\varepsilon)}| \lesssim rac{1}{arepsilon^d}.$

Assume $\theta \mapsto \ell(f_{\theta}(X) - Y)$ is a.s. *L*-Lipschitz w.r.t $\delta(\cdot, \cdot)$, then

$$R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\theta) + 2L\varepsilon + 2\sqrt{\frac{vd\log\frac{2}{\varepsilon\alpha}}{n}}$$

Infinite parameter set

 Θ compact $\Rightarrow \exists$ a finite $\Theta^{(\varepsilon)}$ such that

$$\forall \theta \in \Theta, \ \exists \theta' \in \Theta^{(\varepsilon)} \text{ with } \delta(\theta, \theta') \leq \varepsilon.$$

Example : in the finite dimensional case, there is Θ_{ε} with

 $|\Theta^{(\varepsilon)}| \lesssim rac{1}{arepsilon^d}.$

Assume $\theta \mapsto \ell(f_{\theta}(X) - Y)$ is a.s. *L*-Lipschitz w.r.t $\delta(\cdot, \cdot)$, then

$$R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\theta) + 2L\varepsilon + 2\sqrt{\frac{vd\log\frac{2}{\varepsilon\alpha}}{n}}, \ \varepsilon = \sqrt{\frac{d}{n}}$$

Infinite parameter set

 Θ compact $\Rightarrow \exists$ a finite $\Theta^{(\varepsilon)}$ such that

$$\forall \theta \in \Theta, \ \exists \theta' \in \Theta^{(\varepsilon)} \text{ with } \delta(\theta, \theta') \leq \varepsilon.$$

 $\begin{array}{l} \textbf{Example} : \text{ in the finite} \\ \text{dimensional case, there is} \\ \Theta_{\varepsilon} \text{ with} \end{array}$

 $|\Theta^{(arepsilon)}|\lesssim rac{1}{arepsilon^d}.$

Assume $heta\mapsto \ell(f_{ heta}(X)-Y)$ is a.s. *L*-Lipschitz w.r.t $\delta(\cdot,\cdot)$, then

$$R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\theta) + \sqrt{\frac{d}{n}} \left(2L + 2\sqrt{\nu \log \frac{2n}{d\alpha}} \right)$$

Infinite parameter set

 Θ compact $\Rightarrow \exists$ a finite $\Theta^{(\varepsilon)}$ such that

$$\forall \theta \in \Theta, \ \exists \theta' \in \Theta^{(\varepsilon)} \text{ with } \delta(\theta, \theta') \leq \varepsilon.$$

 $\begin{array}{l} \textbf{Example}: \text{ in the finite} \\ \text{dimensional case, there is} \\ \Theta_{\varepsilon} \text{ with} \end{array}$

 $|\Theta^{(\varepsilon)}| \lesssim rac{1}{arepsilon^d}.$

With the loss is *L*-Lipschitz, with proba. at least $1 - \alpha$, $R(\hat{\theta}) \leq \min_{\theta \in \Theta} R(\theta) + \sqrt{\frac{d}{n}} \left(2L + 2\sqrt{\nu \log \frac{2n}{d\alpha}} \right).$

Now we consider $\Theta_1, \ldots, \Theta_M$ with estimators $\hat{\theta}_1, \ldots \hat{\theta}_M$:

Now we consider $\Theta_1, \ldots, \Theta_M$ with estimators $\hat{\theta}_1, \ldots \hat{\theta}_M$:

$$\mathbb{P}\Big[\exists m, \exists \theta \in \Theta_m, |R(\theta) - r(\theta)| > t_m\Big] \leq \alpha.$$

Now we consider $\Theta_1, \ldots, \Theta_M$ with estimators $\hat{\theta}_1, \ldots \hat{\theta}_M$:

$$\mathbb{P}\Big[\exists m, \exists \theta \in \Theta_m, |R(\theta) - r(\theta)| > t_m\Big] \leq \alpha.$$

Define $\hat{m} = \underset{m}{\operatorname{argmin}}[r(\hat{\theta}_m) + t_m]$, similar derivations lead to

Now we consider $\Theta_1, \ldots, \Theta_M$ with estimators $\hat{\theta}_1, \ldots, \hat{\theta}_M$:

$$\mathbb{P}\Big[\exists m, \exists \theta \in \Theta_m, |R(\theta) - r(\theta)| > t_m\Big] \leq \alpha.$$

Define $\hat{m} = \underset{m}{\operatorname{argmin}}[r(\hat{\theta}_m) + t_m]$, similar derivations lead to

With proba. at least
$$1 - \alpha$$
,
 $R(\hat{\theta}) \leq \min_{1 \leq m \leq M} \left\{ \min_{\theta \in \Theta_m} R(\theta) + \sqrt{\frac{d_m}{n}} \left(2L + 2\sqrt{\nu \log \frac{2nM}{d\alpha}} \right) \right\}.$

Improvements, extensions...

• removing log(n) by refinment of the ε -net structure.

Improvements, extensions...

- removing log(n) by refinment of the ε -net structure.
- faster rates : $\sqrt{d/n}$ becomes d/n thanks to a better analysis of v under the Bernstein condition.

Improvements, extensions...

- removing log(n) by refinment of the ε -net structure.
- faster rates : $\sqrt{d/n}$ becomes d/n thanks to a better analysis of v under the Bernstein condition.
- relaxing the sub-gamma assumption.

Improvements, extensions...

- removing log(n) by refinment of the ε -net structure.
- faster rates : $\sqrt{d/n}$ becomes d/n thanks to a better analysis of v under the Bernstein condition.
- relaxing the sub-gamma assumption.
- more flexible way to measure the complexity of Θ :
 PAC-Bayesian bounds.

1 Short introduction to machine learning theory

2 Machine learning and time series

- Machine learning & stationary time series
- Nonstationary Markov chains

Extension to time series

Machine learning studied for time series with various techniqes. Asymptotic study in the mixing case :

I. Steinwart, D. Hush, C. Scovel. Learning from dependent observations. *Journal of Multivariate Analysis*, 2009.

Extension to time series

Machine learning studied for time series with various techniqes. Asymptotic study in the mixing case :

I. Steinwart, D. Hush, C. Scovel. Learning from dependent observations. *Journal of Multivariate Analysis*, 2009.

In order to extend the previous (non-asymptotic) approach to non-independent observations, exponential inequalities (Hoeffding, Bernstein, etc.) required.

Extension to time series

Machine learning studied for time series with various techniqes. Asymptotic study in the mixing case :

I. Steinwart, D. Hush, C. Scovel. Learning from dependent observations. *Journal of Multivariate Analysis*, 2009.

In order to extend the previous (non-asymptotic) approach to non-independent observations, exponential inequalities (Hoeffding, Bernstein, etc.) required. These inequalities require some assumption on the dependence of the series : Markov, mixing, weak dependence, martingale,...

Machine learning & stationary time series Nonstationary Markov chains

An example on Markov chains

Machine learning & stationary time series Nonstationary Markov chains

An example on Markov chains

Machine learning & stationary time series Nonstationary Markov chains

An example on Markov chains

Let $F : \mathcal{X} \times \mathcal{Y} \to \mathcal{X}$ and $(X_t)_{t \ge 1}$ be the Markov chain $X_t = F(X_{t-1}, \varepsilon_t).$

Machine learning & stationary time series Nonstationary Markov chains

An example on Markov chains

Let $F : \mathcal{X} \times \mathcal{Y} \to \mathcal{X}$ and $(X_t)_{t \geq 1}$ be the Markov chain

$$X_t = F(X_{t-1}, \varepsilon_t).$$

Assume, for $\rho \in [0, 1)$ and C > 0,

$$\mathbb{E}\big[d\big(F(x,\varepsilon_1),F(x',\varepsilon_1)\big)\big] \le \rho d(x,x') \\ d(F(x,y),F(x,y')) \le C\delta(y,y').$$

Objective

$$X_t = F(X_{t-1}, \varepsilon_t).$$

Objective

$$X_t = F(X_{t-1}, \varepsilon_t).$$

In this case, we study one step ahead prediction :

$$r(\theta) = \frac{1}{n-1} \sum_{i=2}^{n} \ell(f_{\theta}(X_{i-1}) - X_i),$$

$$R(\theta) = \mathbb{E}[\ell(f_{\theta}(X_1) - X_2)].$$

Objective

$$X_t = F(X_{t-1}, \varepsilon_t).$$

In this case, we study one step ahead prediction :

$$egin{aligned} r(heta) &= rac{1}{n-1}\sum_{i=2}^n \ell(f_ heta(X_{i-1})-X_i), \ R(heta) &= \mathbb{E}[\ell(f_ heta(X_1)-X_2)]. \end{aligned}$$

Define

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} r(\theta).$$

Notations in DF15

Define
$$G_{X_1}(x) = \int d(x, x') P_{X_1}(dx'),$$

 $G_{\varepsilon}(y) = \int C\delta(y, y') P_{\varepsilon}(dy').$

Notations in DF15

Define
$$G_{X_1}(x) = \int d(x, x') P_{X_1}(dx'),$$

 $G_{\varepsilon}(y) = \int C\delta(y, y') P_{\varepsilon}(dy').$

Assumption : for any $k \ge 2$,

$$\mathbb{E}\Big[G_{X_1}(X_1)^k\Big] \leq rac{k!}{2}V_1M^{k-2}, ext{ and } \ \mathbb{E}\Big[G_{arepsilon}(arepsilon)^k\Big] \leq rac{k!}{2}V_2M^{k-2}.$$

Notations in DF15

Define
$$G_{X_1}(x) = \int d(x, x') P_{X_1}(dx'),$$

 $G_{\varepsilon}(y) = \int C\delta(y, y') P_{\varepsilon}(dy').$

Assumption : for any $k \ge 2$,

$$\mathbb{E}\Big[G_{X_1}(X_1)^k\Big] \leq \frac{k!}{2}V_1M^{k-2}, \text{ and}$$
$$\mathbb{E}\Big[G_{\varepsilon}(\varepsilon)^k\Big] \leq \frac{k!}{2}V_2M^{k-2}.$$

Define
$$\mathcal{V} = rac{V_1 + V_2}{1 -
ho^2}$$
 , $\delta = rac{1 -
ho}{M}.$

Dedecker and Fan's inequality

Theorem (Dedecker & Fan 2015)

Consider a separately Lipschitz function $f: \mathcal{X}^n \to \mathbb{R}$:

$$|f(x_1,...,x_n) - f(x'_1,...,x'_n)| \le \sum_{t=1}^n d(x_t,x'_t).$$

Then, for any $s \in [0, \delta^{-1})$,

$$\mathbb{E}\left[e^{\pm s\{f(X_1,\ldots,X_n)-\mathbb{E}[f(X_1,\ldots,X_n)]\}}\right] \leq \exp\left(\frac{(n-1)s^2\mathcal{V}}{2(1-s\,\delta)}\right)$$

Machine learning & stationary time series Nonstationary Markov chains

Consequences of DF15 for prediction

$$\mathbb{E}\left[e^{\pm s\{f(X_1,\ldots,X_n)-\mathbb{E}[f(X_1,\ldots,X_n)]\}}\right] \leq \exp\left(\frac{(n-1)s^2\mathcal{V}}{2(1-s\,\delta)}\right)\,.$$

Machine learning & stationary time series Nonstationary Markov chains

Consequences of DF15 for prediction

$$\mathbb{E}\left[e^{\pm s\{f(X_1,\ldots,X_n)-\mathbb{E}[f(X_1,\ldots,X_n)]\}}\right] \leq \exp\left(\frac{(n-1)s^2\mathcal{V}}{2(1-s\,\delta)}\right).$$

$$\mathsf{Take} \ f(X_1,\ldots,X_n) = \frac{1}{L}\sum_{i=2}^n \ell(f_\theta(X_{i-1}) - X_i).$$

Machine learning & stationary time series Nonstationary Markov chains

Consequences of DF15 for prediction

$$\mathbb{E}\left[e^{\pm s\{f(X_1,\ldots,X_n)-\mathbb{E}[f(X_1,\ldots,X_n)]\}}\right] \leq \exp\left(\frac{(n-1)s^2\mathcal{V}}{2(1-s\,\delta)}\right)\,.$$

$$\mathsf{Take} \ f(X_1,\ldots,X_n) = \frac{1}{L}\sum_{i=2}^n \ell(f_\theta(X_{i-1}) - X_i).$$

Then for any $0 \le s < (n-1)/(L(1+\rho)\delta)$,

$$\mathbb{P}\Big[|R(heta) - r(heta)| > t\Big] \ \leq 2\exp\left(rac{s^2(1+
ho)^2L^2\mathcal{V}}{2(n-1)-2s(1+
ho)\delta L} - st
ight).$$

Pierre Alquier Machine learning theory for time series

Learning theorem for Markov chains

.

Assume
$$|\Theta^{(\varepsilon)}| \leq \varepsilon^{-d}$$

Theorem

As soon as $n \ge 1 + 4\delta^2 d \log(Ln)/\mathcal{V}$ we have, with probability at least $1 - \alpha$,

$$R(\hat{\theta}) \leq \inf_{\theta \in \Theta} R(\theta) + C_1 \sqrt{\frac{d \log(Ln)}{n-1}} + C_2 \frac{\log\left(\frac{4}{\alpha}\right)}{\sqrt{n-1}} + \frac{C_3}{n}$$

where $C_1 = 4(1+\rho)L\sqrt{\mathcal{V}}$, $C_2 = 2(1+\rho)L\sqrt{\mathcal{V}} + 2\delta$ and $C_3 = 3[G_{\varepsilon}(0) + G_{X_1}(0)]/(1-\rho) + \mathcal{V}/(2\delta)$.

Machine learning & stationary time series Nonstationary Markov chains

Other works on ML & TS

Study of
$$X_t = F(\varepsilon_t; X_{t-1}, X_{t-1}, \dots)$$
 in

based on Rio's version of Hoeffding's inequality

E. Rio. Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. *CRAS*, 2000.

Rates in
$$\sqrt{\frac{d}{n}}$$
.
Fast rates

Rates in
$$\frac{d}{n}$$
 for quadratic ℓ in

P. Alquier, X. Li, O. Wintengerger. Prediction of time series by statistical learning : general losses and fast rates.. *Dependence Modeling*, 2013.

based on Samson's version of Bernstein's inequality for $\varphi\text{-mixing processes}$

P.-M. Samson. Concentration of measure inequalities for markov chains and φ -mixing processes. The Annals of Probability, 2000.

Online prediction approach

The online prediction approach provides tools to aggregate predictors without stochastic assumptions on the data.

Online prediction approach

The online prediction approach provides tools to aggregate predictors without stochastic assumptions on the data.

С

C. Giraud, F. Roueff, A. Sanchez-Perez. Aggregation of predictors for nonstationary sub-linear processes and online adaptive forecasting of time varying autoregressive processes. *The Annals of Statistics*, 2015.

takes advantage of this approach to predict time varying AR processes.

1 Short introduction to machine learning theory

2 Machine learning and time series

- Machine learning & stationary time series
- Nonstationary Markov chains

Short introduction to machine learning theory Machine learning and time series Machine learning & stationary time series Nonstationary Markov chains

Nonstationary Markov chains

P. Alquier, P. Doukhan, X. Fan. Exponential inequalities for nonstationary Markov Chains. *Preprint arxiv :1808.08811*, 2018.

We now assume

$$X_t = F_t(X_{t-1}, \varepsilon_t),$$

We now assume

$$X_{t} = F_{t}(X_{t-1}, \varepsilon_{t}),$$

$$\sup_{t} \mathbb{E}\left[d\left(F_{t}(x, \varepsilon_{1}), F_{t}(x', \varepsilon_{1})\right)\right] \leq \rho d(x, x')$$

$$\sup_{t} d\left(F_{t}(x, y), F_{t}(x, y')\right) \leq C\delta(y, y').$$

We now assume

$$X_t = F_t(X_{t-1}, \varepsilon_t),$$

$$\sup_{t} \mathbb{E} \left[d \left(F_t(x, \varepsilon_1), F_t(x', \varepsilon_1) \right) \right] \le \rho d(x, x')$$
$$\sup_{t} d \left(F_t(x, y), F_t(x, y') \right) \le C \delta(y, y').$$

Example 1 : time-varying AR(1)

$$X_t = a_t X_{t-1} + \varepsilon_t, \sup_t |a_t| \le \rho.$$

We now assume

$$X_t = F_t(X_{t-1}, \varepsilon_t),$$

$$\sup_{t} \mathbb{E} \left[d \left(F_t(x, \varepsilon_1), F_t(x', \varepsilon_1) \right) \right] \le \rho d(x, x')$$
$$\sup_{t} d \left(F_t(x, y), F_t(x, y') \right) \le C \delta(y, y').$$

Example 1 : time-varying AR(1)

$$X_t = a_t X_{t-1} + \varepsilon_t, \ \sup_t |a_t| \le \rho.$$

Example 2 : *T*-periodic AR(1)

$$X_t = a_{t[T]} X_{t-1} + \varepsilon_t, \ \max_{1 \le t \le T} |a_t| \le \rho.$$

Example : T-periodic AR(1)

4-periodic AR(1), $(a_1, a_2, a_3, a_4) = (0.8, 0.5, 0.9, -0.7)$.

Series X

Figure - Simulated data.

Figure – Autocorrelations.

Bernstein's inequality

Theorem (ADF18)

Assume that, for any $k \ge 2$,

$$\mathbb{E}\Big[G_{X_1}(X_1)^k\Big] \leq rac{k!}{2}V_1M^{k-2}, ext{ and } \ \mathbb{E}\Big[G_{arepsilon}(arepsilon)^k\Big] \leq rac{k!}{2}V_2M^{k-2}.$$

Consider a separately Lipschitz function $f:\mathcal{X}^n \to \mathbb{R}.$ For any $s \in [0, \delta^{-1})$,

$$\mathbb{E}\left[e^{\pm s\{f(X_1,\ldots,X_n)-\mathbb{E}[f(X_1,\ldots,X_n)]\}}\right] \le \exp\left(\frac{(n-1)s^2\mathcal{V}}{2(1-s\,\delta)}\right)$$

.

Problem : estimation of the (best) period

From now, assume that

$$X_t = f_t^*(X_{t-1}) + \varepsilon_t$$

(not necessarily periodic, but we hope so).

Problem : estimation of the (best) period

From now, assume that

$$X_t = f_t^*(X_{t-1}) + \varepsilon_t$$

(not necessarily periodic, but we hope so).

Let $(f_{\theta}, \theta \in \Theta)$ be a set of predictors $\mathcal{X} \to \mathcal{X}$, define $\mathcal{H}(\varepsilon)$ as $\log |\Theta^{(\varepsilon)}|$. Put, for any T and $\theta_{1:T} = (\theta_1, \dots, \theta_T) \in \Theta^T$:

$$r_n(\theta_{1:T}) = \frac{1}{n-1} \sum_{i=2}^n \ell(f_{\theta_{i[T]}}(X_{i-1}) - X_i)$$

 $R(\theta_{1:T}) = \mathbb{E}[r_n(\theta_{1:T})]$

Problem : estimation of the (best) period

From now, assume that

$$X_t = f_t^*(X_{t-1}) + \varepsilon_t$$

(not necessarily periodic, but we hope so).

Let
$$(f_{\theta}, \theta \in \Theta)$$
 be a set of predictors $\mathcal{X} \to \mathcal{X}$, define $\mathcal{H}(\varepsilon)$ as $\log |\Theta^{(\varepsilon)}|$. Put, for any T and $\theta_{1:T} = (\theta_1, \ldots, \theta_T) \in \Theta^T$:

$$r_n(\theta_{1:T}) = \frac{1}{n-1} \sum_{i=2}^n \ell(f_{\theta_{i[T]}}(X_{i-1}) - X_i)$$

$$R(\theta_{1:T}) = \mathbb{E}[r_n(\theta_{1:T})] \in \left[\frac{1}{T}\sum_{t=1}^T \mathbb{E}[\ell(f_{\theta_{t[T]}}(X_{t-1}) - X_t)] \pm \frac{C_0T}{n-1}\right]$$

if actually $f_t^* = f_{t[\mathcal{T}]}^*$, where $C_0 = L(1+\rho) \left[\frac{G_{\varepsilon}(0)}{1-\rho} + G_{X_1}(0) \right]$.

Estimators

Estimation for a given period T:

$$\hat{\theta}_{1:T} = (\hat{\theta}_1, \dots, \theta_T) = \operatorname*{argmin}_{\theta_{1:T} = (\theta_1, \dots, \theta_T)} r_n(\theta_{1:T}).$$

Period selection :

$$\hat{T} = \underset{1 \leq T \leq T_{\max}}{\operatorname{argmin}} \left[r_n(\hat{f}_{1:T}) + \frac{C_1}{2} \sqrt{\frac{T\mathcal{H}(\frac{1}{Ln})}{n-1}} \right]$$

where C_1 is as in the stationary case : $C_1 = 4(1 + \rho)L\sqrt{\mathcal{V}}$.

Analysis of the estimators

Theorem (ADF18)

As soon as $n \ge 1 + 4\delta^2 T_{\max} \mathcal{H}(\frac{1}{Ln})/\mathcal{V}$, with probability at least $1 - \alpha$,

$$R(\hat{\theta}_{1:\hat{T}}) \leq \inf_{1 \leq T \leq T_{\max}} \inf_{\theta_{1:T} \in \Theta^{T}} \left[R(\theta_{1:T}) + C_{1} \sqrt{\frac{T\mathcal{H}(\frac{1}{L_{n}})}{n-1}} + C_{2} \frac{\log\left(\frac{4T_{\max}}{\alpha}\right)}{\sqrt{n-1}} + \frac{C_{3}}{n} \right].$$

Analysis of the estimators

Theorem (ADF18)

As soon as $n \ge 1 + 4\delta^2 T_{\max} \mathcal{H}(\frac{1}{Ln})/\mathcal{V}$, with probability at least $1 - \alpha$,

$$R(\hat{\theta}_{1:\hat{T}}) \leq \inf_{1 \leq T \leq T_{\max}} \inf_{\theta_{1:T} \in \Theta^{T}} \left[R(\theta_{1:T}) + C_{1} \sqrt{\frac{T\mathcal{H}(\frac{1}{Ln})}{n-1}} + C_{2} \frac{\log\left(\frac{4T_{\max}}{\alpha}\right)}{\sqrt{n-1}} + \frac{C_{3}}{n} \right].$$

In practice, C_1 , C_2 and C_3 are too large and ρ is not known anyway... we recommend to use the slope heuristic here.

Short introduction to machine learning theory Machine learning and time series Machine learning & stationary time series Nonstationary Markov chains

Slope heuristic

Figure – Empirical risk as a function of T.

Pierre Alquier Machine learning theory for time series

Thank you!