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Generic machine learning problem
Main ingredients :

observations : (X1,Y1), (X2,Y2), ..., (Xn,Yn)
→ usually i.i.d from an unknown distribution P ...
a restricted set of predictors (fθ, θ ∈ Θ)
→ fθ(X ) meant to predict Y .
A loss function `
→ `(y ′ − y) incurred by predicting y ′ while the truth is y .
the risk R(θ)
→ R(θ) = E(X ,Y )∼P [`(fθ(X )− Y )]. Not observable.
an empirical proxy r(θ) for R(θ)
→ for example r(θ) = 1

n

∑n
i=1 `(fθ(Xi)− Yi).

empirical risk minimizer θ̂
→ θ̂ = argmin

θ∈Θ
r(θ).
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Sub-gamma random variables

Definition
T is said to be sub-gamma iff
∃(v ,w) such that ∀k ≥ 2,

E
(
|T |k

)
≤ k!vw k−2

2
.

Examples :
T ∼ Γ(a, b), holds with
(v ,w) = (ab2, b).
any Z with
P(|Z | ≥ t) ≤ P(|T | ≥ t).
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Bernstein’s inequality

Theorem
Let T1, . . . ,Tn be i.i.d and (v ,w)-sub-gamma random
variables. Then, ∀ζ ∈ (0, 1/w),

E exp

(
ζ

n∑
i=1

[Ti − ETi ]

)
≤ exp

(
nvζ2

2(1− wζ)

)
.

Consequence in ML : put Ti = −`(fθ(Xi)− Yi) and assume
Ti is (v ,w)-sub-gamma, then

[
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[
R(θ)− r(θ) > t

]
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exp [s (R(θ)− r(θ))] > exp(st)

}
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Finite set of predictors and union bound

P
[
∃θ ∈ Θ, |R(θ)− r(θ)| > t

]
= P

[⋃
θ∈Θ

{
|R(θ)− r(θ)| ≥ t

}]

,
,
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Finite set of predictors and union bound

P
[
∃θ ∈ Θ, |R(θ)− r(θ)| > t

]
≤ 2|Θ| exp

(
vs2

2(n − ws)
− st

)
︸ ︷︷ ︸

=α

,On the complement,

, R(θ̂) ≤ min
θ∈Θ

R(Θ) +
vs

n − ws
+

2 log 2|Θ|
α

s
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]
≤ 2|Θ| exp

(
vs2

2(n − ws)
− st

)
︸ ︷︷ ︸

=α

,On the complement, for
s = [n/(2w)] ∧

√
(n/v) log(2|Θ|/α),
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+
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Finite set of predictors and union bound

P
[
∃θ ∈ Θ, |R(θ)− r(θ)| > t

]
≤ 2|Θ| exp

(
vs2

2(n − ws)
− st

)
︸ ︷︷ ︸

=α

,On the complement,

we obtain :

,
Theorem
With probability at least 1− α,

R(θ̂) ≤ min
θ∈Θ

R(θ) + 2

√
v log 2|Θ|

α

n
∨

2w log 2|Θ|
α

n
.
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Finite set of predictors and union bound

P
[
∃θ ∈ Θ, |R(θ)− r(θ)| > t

]
≤ 2|Θ| exp

(
vs2

2(n − ws)
− st

)
︸ ︷︷ ︸

=α

,On the complement,

we obtain :

,
Theorem
With proba. at least 1− α, with α not rediculously small,

R(θ̂) ≤ min
θ∈Θ

R(θ) + 2

√
v log 2|Θ|

α

n
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Infinite parameter set

Θ compact ⇒ ∃ a finite Θ(ε) such that

∀θ ∈ Θ, ∃θ′ ∈ Θ(ε) with δ(θ, θ′) ≤ ε.
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Infinite parameter set
Θ compact ⇒ ∃ a finite Θ(ε) such that

∀θ ∈ Θ, ∃θ′ ∈ Θ(ε) with δ(θ, θ′) ≤ ε.

Assume θ 7→ `(fθ(X )− Y ) is a.s. L-Lipschitz w.r.t δ(·, ·), then

R(θ̂) ≤ minθ∈Θ R(θ) + 2Lε + 2

√
v log 2|Θ(ε)|

α

n
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Θ compact ⇒ ∃ a finite Θ(ε) such that

∀θ ∈ Θ, ∃θ′ ∈ Θ(ε) with δ(θ, θ′) ≤ ε.

Example : in the finite
dimensional case, there is

Θε with

|Θ(ε)| . 1
εd
.

Assume θ 7→ `(fθ(X )− Y ) is a.s. L-Lipschitz w.r.t δ(·, ·), then

R(θ̂) ≤ minθ∈Θ R(θ) + 2Lε + 2
√

vd log 2
εα

n
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Θ compact ⇒ ∃ a finite Θ(ε) such that

∀θ ∈ Θ, ∃θ′ ∈ Θ(ε) with δ(θ, θ′) ≤ ε.

Example : in the finite
dimensional case, there is

Θε with

|Θ(ε)| . 1
εd
.

With the loss is L-Lipschitz, with proba. at least 1− α,

R(θ̂) ≤ min
θ∈Θ

R(θ) +

√
d

n

(
2L + 2

√
v log

2n
dα

)
.
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Model selection

Now we consider Θ1, . . . ,ΘM with estimators θ̂1, . . . θ̂M :

P
[
∃m, ∃θ ∈ Θm, |R(θ)− r(θ)| > tm

]
≤ α.

Define m̂ = argmin
m

[r(θ̂m) + tm], similar derivations lead to

With proba. at least 1− α,

R(θ̂) ≤ min
1≤m≤M

{
min
θ∈Θm

R(θ) +

√
dm
n

(
2L + 2

√
v log

2nM
dα

)}
.
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Going further

Improvements, extensions...
removing log(n) by refinment of the ε-net structure.

faster rates :
√

d/n becomes d/n thanks to a better
analysis of v under the Bernstein condition.
relaxing the sub-gamma assumption.
more flexible way to measure the complexity of Θ :
PAC-Bayesian bounds.
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Extension to time series

Machine learning studied for time series with various
techniqes. Asymptotic study in the mixing case :

I. Steinwart, D. Hush, C. Scovel. Learning from dependent observations. Journal of
Multivariate Analysis, 2009.

In order to extend the previous (non-asymptotic) approach to
non-independent observations, exponential inequalities
(Hoeffding, Bernstein, etc.) required. These inequalities
require some assumption on the dependence of the series :
Markov, mixing, weak dependence, martingale,...
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An example on Markov chains

Let F : X × Y → X and(Xt)t≥1 be the Markov chain

Xt = F (Xt−1, εt).

Assume, for ρ ∈ [0, 1) and C > 0,

E
[
d
(
F (x , ε1),F (x ′, ε1)

)]
≤ ρd(x , x ′)

d(F (x , y),F (x , y ′)) ≤ Cδ(y , y ′).
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Objective

Xt = F (Xt−1, εt).

In this case, we study one step ahead prediction :

r(θ) =
1

n − 1

n∑
i=2

`(fθ(Xi−1)− Xi),

R(θ) = E[`(fθ(X1)− X2)].

Define
θ̂ = argmin

θ∈Θ
r(θ).
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Notations in DF15

Define GX1(x) =

∫
d(x , x ′)PX1(dx ′),

Gε(y) =

∫
Cδ(y , y ′)Pε(dy

′).

Assumption : for any k ≥ 2,

E
[
GX1(X1)k

]
≤ k!

2
V1M

k−2, and

E
[
Gε(ε)k

]
≤ k!

2
V2M

k−2 .

Define V =
V1 + V2

1− ρ2 , δ =
1− ρ
M

.
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Dedecker and Fan’s inequality

Theorem (Dedecker & Fan 2015)

Consider a separately Lipschitz function f : X n → R :

|f (x1, . . . , xn)− f (x ′1, . . . , x
′
n)| ≤

n∑
t=1

d(xt , x
′
t) .

Then, for any s ∈ [0, δ−1),

E [e±s{f (X1,...,Xn)−E[f (X1,...,Xn)]}] ≤ exp

(
(n − 1)s2V
2(1− s δ)

)
.
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Consequences of DF15 for prediction

E
[
e±s{f (X1,...,Xn)−E[f (X1,...,Xn)]}] ≤ exp

(
(n − 1)s2V
2(1− s δ)

)
.

Take f (X1, . . . ,Xn) =
1
L

n∑
i=2

`(fθ(Xi−1)− Xi).

Then for any 0 ≤ s < (n − 1)/(L(1 + ρ)δ),

P
[
|R(θ)− r(θ)| > t

]
≤ 2 exp

(
s2(1 + ρ)2L2V

2(n − 1)− 2s(1 + ρ)δL
− st

)
.
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Learning theorem for Markov chains

Assume |Θ(ε)| ≤ ε−d .

Theorem
As soon as n ≥ 1 + 4δ2d log(Ln)/V we have, with probability
at least 1− α,

R(θ̂) ≤ inf
θ∈Θ

R(θ) + C1

√
d log(Ln)

n − 1
+ C2

log
(

4
α

)
√
n − 1

+
C3

n
,

where C1 = 4(1 + ρ)L
√
V , C2 = 2(1 + ρ)L

√
V + 2δ and

C3 = 3[Gε(0) + GX1(0)]/(1− ρ) + V/(2δ).
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Other works on ML & TS

Study of Xt = F (εt ;Xt−1,Xt−1, . . . ) in

P. Alquier, O. Wintengerger. Model selection for weakly dependent time series
forecasting. Bernoulli, 2012.

based on Rio’s version of Hoeffding’s inequality

E. Rio. Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes.
CRAS, 2000.

Rates in

√
d

n
.
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Fast rates

Rates in
d

n
for quadratic ` in

P. Alquier, X. Li, O. Wintengerger. Prediction of time series by statistical learning :
general losses and fast rates.. Dependence Modeling, 2013.

based on Samson’s version of Bernstein’s inequality for
ϕ-mixing processes

P.-M. Samson. Concentration of measure inequalities for markov chains and ϕ-mixing
processes. The Annals of Probability, 2000.
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Online prediction approach

The online prediction approach
provides tools to aggregate pre-
dictors without stochastic as-
sumptions on the data.

C. Giraud, F. Roueff, A.
Sanchez-Perez. Aggregation of
predictors for nonstationary
sub-linear processes and online
adaptive forecasting of time varying
autoregressive processes. The
Annals of Statistics, 2015.

takes advantage of this ap-
proach to predict time varying
AR processes.
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Nonstationary Markov chains

P. Alquier, P. Doukhan, X. Fan.
Exponential inequalities for
nonstationary Markov Chains.
Preprint arxiv :1808.08811, 2018.
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Non-stationary Markov chains
We now assume

Xt = Ft(Xt−1, εt),

sup
t

E
[
d
(
Ft(x , ε1),Ft(x

′, ε1)
)]
≤ ρd(x , x ′)

sup
t

d(Ft(x , y),Ft(x , y
′)) ≤ Cδ(y , y ′).

Example 1 : time-varying AR(1)

Xt = atXt−1 + εt , sup
t
|at | ≤ ρ.

Example 2 : T -periodic AR(1)

Xt = at[T ]Xt−1 + εt , max
1≤t≤T

|at | ≤ ρ.
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Example : T -periodic AR(1)

4-periodic AR(1), (a1, a2, a3, a4) = (0.8, 0.5, 0.9,−0.7).

Figure – Simulated data. Figure – Autocorrelations.
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Bernstein’s inequality

Theorem (ADF18)

Assume that, for any k ≥ 2,

E
[
GX1(X1)k

]
≤ k!

2
V1M

k−2, and

E
[
Gε(ε)k

]
≤ k!

2
V2M

k−2 .

Consider a separately Lipschitz function f : X n → R. For any
s ∈ [0, δ−1),

E [e±s{f (X1,...,Xn)−E[f (X1,...,Xn)]}] ≤ exp

(
(n − 1)s2V
2(1− s δ)

)
.

Pierre Alquier Machine learning theory for time series



Short introduction to machine learning theory
Machine learning and time series

Machine learning & stationary time series
Nonstationary Markov chains

Problem : estimation of the (best) period
From now, assume that

Xt = f ∗t (Xt−1) + εt

(not necessarily periodic, but we hope so).

Let (fθ, θ ∈ Θ) be a set of predictors X → X , define H(ε) as
log |Θ(ε)|. Put, for any T and θ1:T = (θ1, . . . , θT ) ∈ ΘT :

rn(θ1:T ) =
1

n − 1

n∑
i=2

`(fθi [T ]
(Xi−1)− Xi)

R(θ1:T ) = E[rn(θ1:T )]

∈

[
1
T

T∑
t=1

E[`(fθt[T ]
(Xt−1)− Xt)]± C0T

n − 1

]
if actually f ∗t = f ∗t[T ], where C0 = L(1 + ρ)

[
Gε(0)
1−ρ + GX1(0)

]
.
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Estimators

Estimation for a given period T :

θ̂1:T = (θ̂1, . . . , θT ) = argmin
θ1:T =(θ1,...,θT )

rn(θ1:T ).

Period selection :

T̂ = argmin
1≤T≤Tmax

rn(f̂1:T ) +
C1

2

√
TH( 1

Ln
)

n − 1


where C1 is as in the stationary case : C1 = 4(1 + ρ)L

√
V .
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Analysis of the estimators

Theorem (ADF18)

As soon as n ≥ 1 + 4δ2TmaxH( 1
Ln

)/V , with probability at least
1− α,

R(θ̂1:T̂ ) ≤ inf
1≤T≤Tmax

inf
θ1:T∈ΘT

[
R(θ1:T )

+ C1

√
TH( 1

Ln
)

n − 1
+ C2

log
(

4Tmax

α

)
√
n − 1

+
C3

n

]
.

In practice, C1, C2 and C3 are too large and ρ is not known
anyway... we recommend to use the slope heuristic here.
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Theorem (ADF18)

As soon as n ≥ 1 + 4δ2TmaxH( 1
Ln

)/V , with probability at least
1− α,

R(θ̂1:T̂ ) ≤ inf
1≤T≤Tmax

inf
θ1:T∈ΘT

[
R(θ1:T )

+ C1

√
TH( 1

Ln
)

n − 1
+ C2

log
(

4Tmax

α

)
√
n − 1

+
C3

n

]
.

In practice, C1, C2 and C3 are too large and ρ is not known
anyway... we recommend to use the slope heuristic here.
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Slope heuristic

Figure – Empirical risk as a function of T .
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Thank you !

Pierre Alquier Machine learning theory for time series


	Short introduction to machine learning theory
	Machine learning and time series
	Machine learning & stationary time series
	Nonstationary Markov chains


