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Some problems with the likelihood and how to fix them S mlilams with dhe s

Minimum Distance Estimation (MDE)

The Maximum Likelihood Estimator (MLE)
Let Xi,...,X, beiidin X from a probability distribution P,.

Statistical inference :
@ propose a model (Py, 0 € ©), assume Py = Py,.
@ compute 0, = 0,(X1,..., X,).

Letting py denote the density of Py, then
OME = argmax L,(6), where L,(6) = [ [ po(X:)-
) paley
Example : Piyo) = N(m,o?) then

m= %iX, and 6’2 = 1i()(, — Iﬁ)2
i=1 i=1

n-<
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Minimum Distance Estimation (MDE)

MLE not unique / not consistent

Example : H

exp(—|x — 0
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Minimum Distance Estimation (MDE)

MLE fails in the presence of outliers

What is an outlier ?
Huber proposed the contamination model : with probability ¢,
X; is not drawn from Py, but from @ that can be anything :

Py = (1 — E)Pgo +eQ.
Example : Py = Unif[0, 0], then

1~ .
Ln(0) = on H Lio<x,<oy = 0 = max X;.
i=1

1<i<n

In the case of the following contamination, the MLE is
extremely far from the truth :

Py = (1 — &).Unif[0,1] + N (10%,1)...
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Some problems with the likelihood
Minimum Distance Estimation (MDE)

Minimum Distance Estimation

Empirical distribution : P, := - Zléxi.

Minimum Distance Estimation (MDE)

Let d(-,-) be a metric on probability distributions.

Oy := argmind (Pg, P,,) :
0cO
@ Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics.

Idea : MDE with an adequate d leads to robust estimation.

@ Bickel, P. J. (1976). Another look at robustness : a review of reviews and some new
developments. Scandinavian Journal of Statistics. Discussion by Sture Holm.

@ Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estimation. JASA.

@ Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's
entropy. Annals of Statistics.

v
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Minimum Distance Estimation (MDE)

Integral Probability Semimetrics

Integral Probability Semimetrics (IPS)

Let F be a set of real-valued, measurable functions and put

df(P, Q) = ?gg EXNP[f(X)] - EX~Q[f(X)] °

@ Miiller, A. (1997). Integral probability metrics and their generating classes of functions. Applied
Probability.

@ assumptions required in order to ensure that
dr(P,Q) = 0= P = Q (that is, dr is a metric).
@ assumptions required in order to ensure that dr < +oo.
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Minimum Distance Estimation (MDE)

Non-asymptotic bound for MDE

@ Xi,..., X, iid from Py,
e for any f € F, sup,cy |f(x)] < 1.

Then
E [d;(P

i) )
fur

n

1
Rad,(F) :=supEy, v,orEc . e [sup — Z eif(Y;)
P

n
feF i—1

PO)] < Inf dx(Py, Po) + 4.Rad,(F).

where €1, ..., €, are i.i.d Rademacher variables :
Ple; =1) =P(e; = —1) =1/2.
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Some problems with the likelihood
Minimum Distance Estimation (MDE)

Example 1 : set of indicators

wo-{ Brea T 2 TS

Image from Wikipédia. 3 points shattered 4 points impossible

Reminder - Vapnik-Chervonenkis dimension
Assume that F = {14, A € A} for some A C P(X),
@ Sr(xi,...,xn) ={(f(x),...,f(xn)), f € F},
@ VO(F) :=max{n: Ixy, ..., Xn, |Sr(x1,..., %) =2"}.

Theorem (Bartlett and Mendelson)

Rad, (F) < \/Q.VC(]-") log(n + 1).

n

@ Bartlett, P. L. & Mendelson, S. (2002). Rademacher and Gaussian complexities : Risk bounds and
structural results. JMLR.

v
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Minimum Distance Estimation (MDE)

Example 1 : KS and TV distances

Two classical examples :
o A = {all measurable sets in X'}, then dx(-, ) is the total
variation distance TV(:,-).
o VC(F) = +oo when |X| = +o0,
e in general, Rad,(F) = 0.
o XY =R, A= {(—00,x], x € R}, then dx(-,-) is the
Kolmogorov-Smirnov distance KS(-, -).
e KS distance was actually proposed by S. Holm for robust

estimation,
e VC(F)=1,s0:

21 1
2 [KS(PéKs’ 'DO)] = 9'2(]; KS(Py, Po) + 4. M J

n
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Minimum Distance Estimation (MDE)

Example 2 : Maximum Mean Discrepancy (MMD)

@ RKHS (H, (-, -)4) with kernel k(x,y) = (#(x), p(y))y-
o If ||¢(x)|ln = k(x,x) <1 then Ex.,[¢(X)] is well-defined .
@ The map p+— Ex.,[¢(X)] is one-to-one if k is characteristic.

@ Gaussian kernel k(x,y) = exp(—||x — y||?/7?) satisfies these
assumption.

F={feH: |flx<1}

Di(P, Q) := d#(P, Q) = sup|[Ex-plf(X)] — Ex~alF(X)

— ‘ Ex~p[o(X)] — EXNQ[QS(X)]HH' )
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Minimum Distance Estimation (MDE)

Example 2 : MMD

Theorem (Bartlett and Mendelson)

k
F{feH: ||flu <1} = Rady(F) < 1/ 2Pk X)

n

E [Di(Py,, Po)]| < jof Di(Po, Po) + 4
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Minimum Distance Estimation (MDE)

Example 2 : MMD

We actually have

A 2 <
D (Po, Pa) = Ex ey [K(X, X)] = — D Exep, [k(X, X))
i=1

1

and so 1Si7%n

VD2 (Py, P,)

n

k(X, X') — % > k(X X)

i=1

= 2Ex x'~p, { Villog ps(X )]}

that can be approximated by sampling from P,.
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Example 3 : Wasserstein

Another classical metric belongs to the IPS family :

Ws(P. Q)= sup |Ex-p[f(X)] - Ex~olf(X)]
Li-pfj')_;mi

where Lip(f) := sup,, |f(x) — f(y)[/d(x,y).

Bound on the Rademacher complexity when X" is bounded :

Non-parametric estimation of integral probability metrics. IEEE International Symposium on

@ Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schélkopf, B., Lanckriet, G.R. (2010).
Information Theory.

Minimum Wasserstein estimation studied in :

Wasserstein distance. Information and Inference :

@ Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). On parameter estimation with the
: A Journal of the IMA.
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Minimum Distance Estimation (MDE)

MDE and robustness

Reminder

E |dx(P;

Y
aF

Po)] < inf d(Po, Po) + 4Rads(F).

Huber's contamination model : Py = (1 — €)Py, + Q.

CI']:(IDQ07 PO) = ?u];?_ ’EXNPBO f(X) — (1 — g)EXNPeo f(X) — €EXNQIC(X)’
S

= sup ]s]EXNP‘,u f(X) — eEx~qf (X)|
fer

=ce.dr(Pg,, Q) <2 ifforany f € F,sup|f(x)| <1

Corollary - in Huber's contamination model

E [d;(PédF, Pgo)] < 4¢ + 4. Rad,(F).
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Minimum Distance Estimation (MDE)

MDE and robustness : toy experiment

Model : N(0,1), Xi,..., X, i.i.d N(6,1), n =100 and we
repeat the exp. 200 times. Kernel k(x, y) = exp(—|x — y|).

Omie éKS
mean abs. error 0.081 0.088

Now, ¢ = 2% of the observations drawn from a Cauchy.

mean abs. error 0.276 0.088
Now, € = 1% are replaced by 1, 000.

mean abs. error 10.008 0.082
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Minimum MMD estimation D .
Applications and extensions

Improving the constant

From now, we assume that sup, k(x, x) < 1. We know :

) 4
E [Dk(PéDk7 Po)] < ggng(Pe, Po) + i) J

We will now prove a better result without using the
Rademacher complexity :
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Minimum MMD estimation D .
Applications and extensions

Proof of the theorem : preliminary lemma

For any Py, when Xi, ..., X, are i.i.d from Py,

E Dy (P P°)] < \if

{E[m (o r)]} < [B2 (PP
— & |/ o) - utRo)

= (U [n(0x) — (PO
<1/n

4



Minimum MMD estimation Refinement of the bounds

Applications and extensions

Proof of the theorem

S]Dk P97Pn

¥, Dy (Py, P°) < Dy (P;, P,
( + Dy

)
")

+ Dy (ﬁn, PO
(

N— ——

P, P°

< Dy (Py, P°) + 2D (P, P°)

. 2
E [Dk (P, Po)] < jnf Di(Po, Po) + 7 J
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Minimum MMD estimation

A bound in probability

Thanks to McDiarmid’s inequality :

For any Py, when Xi, ..., X, are i.i.d from Py, with probability
at least 1 — ¢,

Joint work with Badr-Eddine Chérief-Abdellatif (CNRS).

@ Chérief-Abdellatif, B.-E. and Alquier, P. Finite Sample

Properties of Parametric MMD Estimation : Robustness
to Misspecification and Dependence. Bernoulli, 2022.
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Minimum MMD estimation D .
Applications and extensions

Example : Gaussian mean estimation

Example : Py = N(0,021) for 6 € R7.
Using a Gaussian kernel k(x,y) = exp(—|x — y2||/7?).

d
2 2 979/”2
D2 (Py, Py) =2 [ —L 1- _19=01"N ]
(P Por) (402+72> [ exp( 407+

Together with the previous result, this gives :

165™° — 60>

L+ /2Tog 15 (402 +v2)§]
n 2 ’

< —(40% +~?%) log [1 - 5

v = 2do® =

2 1 2log 1/6)2
030 — gy < o2 2L E V2B g 4 o)
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Minimum MMD estimation D .
Applications and extensions

Variance-aware bounds (1/2)

— & |/ o) - utRo)
= (U/m)E [1(5x) — n(Po)|3]

4

Lemma - variance-aware version

E[DkPPO \/TO \[
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Minimum MMD estimation

Variance-aware bounds (2/2)

Theorem — bound in expectation

vi(Po)

E [Dk(Pé, 'DO)] S HIgng(Pg, Po) -+ 2

Theorem — bound in probability
With probability at least 1 — 9,

vi(Po)2log 3 . 8log 3

Dy (P;, P°) < inf Dy (Py, P%) +2 . 3n

Joint work with Geoffrey Wolfer (RIKEN AIP).

@ Wolfer, G. and Alquier, P. Variance-Aware Estimation of Kernel
Mean Embedding. Preprint arXiv :2210.06672.
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Minimum MMD estimation D .
Applications and extensions

Upper-bounding the variance

In the case of the Gaussian kernel

k(x,y) = exp(—[lx — y[*/7?)

we have

vi(Po) <1 exp {_QTT(VWPO(X))}

2Tx(Varpy (X))
,}/2

Example : Gaussian mean estimation (continued).

Using the variance aware bound

, 4log1/s
¥ =7 — +00 = [|BMMP _ 9|12 < da2%/

(1+ o(1)).
Pierre Alquier, RIKEN AIP MMD estimation
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Minimum MMD estimation D .
Applications and extensions

Empirical bound

In practice, we can estimate v, (FPp) by

U=~ i 1 z”: (k(Xi;Xi) - %Zn:k(xiaxj)> :

i=1 j=1

We have E(7,) = vi(P), and

Theorem — bound with empirical variance

Assume that k(x,y) = ¢(x — y) € [a, b]. Then, with
probability at least 1 — 9,

_ | 2log 3 32v/b— alog 3
]Dk (Pé, PO) S elg(g ]D)k (Pg, P0)+2 n —+ 3n 5

v
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Minimum MMD estimation

Generative Adversarial Networks (GAN, 1/2)

GMMN

Uniform Prior

l

@ Dziugaite, G. K., Roy, D. M. & Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. UAI.

Generative model X ~ Py :
e U ~ Unif[0, 1],
@ X = Fp(U) where Fy is some
NN with weights 6.

wes

I

uonerauan) ¢

@ Li, Y., Swersky, K. & Zemel, R. (2015). Generative Moment Matching Networks. ICML.

— proposed to minimize the MMD to learn 6.
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GAN (2/2)

Results from Dziugaite et al. (2015).

e UE#!M:“' L
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Applications and extensions

Inference for Systems of SDEs (1/2)

This paper developped the asymptotic theory of MMD :

@ Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv :1906.05944.

They also applied the method to inference in SDEs :

dXt - b()(j_—7 el)dt + U(Xt, 92)th

@ easy to sample from the model with a given 6 = (61, 6,),

@ they propose a method to approximate the gradient of
the MMD criterion.
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Inference for Systems of SDEs (2/2)

Example in a (stochastic) Lotka-Volterra model.

@
X 1 . -1 - 0
d( X ) = K o )HI.A., +< ) )mxmz, + ( o )91«5-’(2.1} dt

- 400

- X " w0 /
+ ( (l) )v’n..x.,,(m;‘” + ( 11 > VX X d W2 4 ( (’1 ) VO3 X 200 5
00
. < ;

0 200 400 600 600 025 050 0.5 100
X t

Results from Briol et al. (2019)

: compare MMD minimization
to Wasserstein minimization.

120 === A wony
~ ~ 110 v
w o s
g g 00|
@ T gp
E E
o o so
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60
. \ . . 301 . . .
o 5 10 15 20 25 0 10 20 30

Descent Steps Descent Steps
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Applications and extensions

Regression

@ problem with regression : we want to specify and estimate
a parametric model Py(x) for Y|X. MMD requires to
specify a model for (X, Y).

@ natural idea : estimate the distribution of X by
15" 1 0x and use the MMD procedure on Pyx).

@ the previous theory shows directly that we estimate the
distribution of (X, Y') consistently.

@ it is far more difficult to prove that we estimate the
distribution of Y|X.

Joint work with M. Gerber (Bristol).

@ Alquier, P. and Gerber, M. (2020). Universal Robust Regression via
Maximum Mean Discrepancy. Preprint arXiv.
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Minimum MMD estimation

Copulas

@ another semi-parametric
model : copulas.

@ asymptotic theory + R
package. -t .N

With B.-E. Chérief-Abdellatif (CNRS), J.-D. Fermanian (ENSAE Paris), A. Derumigny (TU Delft).

@ Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. Estimation of copulas
via Maximum Mean Discrepancy. JASA, to appear.

MHDCopula: Robust Estimation of Copulas by Maximun Mean Discrepancy

R rovide unctonsfor th roust stimation of paremetric il of copuls sing miiizaion o the Woximu Mean Dscrepacy, llowing the article Acuir, ChériebAbelas,
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At Aiexis Derumiony © fau, e, ene Alqer  [oul,Jean-David Fermarian © [au], Bodr Eadine Chéret Abdeld o]
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Riomarae BugReports: s gt ComAlexeruriny MMDCopulafasues
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Haterls READUE NEWS
A finares CRAN checks:  MMDCosularess
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Example : Gaussian copulas

MSE with uniform outlers on [0, 1]°2 MSE with outliers in the top-left comer

Estimator Estimator

MsE

shareOutiers SharsOutiers
MSE with outliers in the bottom-left comer

Estimator

MsE

shareOutiers

rre Alquier, RIKEN AIP
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Minimum MMD estimation

Example : other models

MSE with outliers in the top-left comer, Clayon family MSE with outliers in the top-left comer, Gumbel family

Estimator Estimator
MND i Gaussiontemel =

sE

shareOutiers : shareOutiers

MSE with outliers in the top-left comer, Frank family

Estmator

e

shareOutiers
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Approximate Bayesian Computation and MMD

Co-authors and paper

@ S. Legramanti, D. Durante & P. Alquier (2022). Concentration and robustness of
discrepancy—based ABC via Rademacher complexity. Preprint arXiv :2206.06991.

Sirio Legramanti Daniele Durante
(University of Bergamo)  (Bocconi University, Milan)

9
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Approximate Bayesian Computation and MMD

Estimators, randomized estimators and Bayes rule

@ Yi,=Y1,...,Y,iid from u*,

@ model : (uy, 0 € ©),

@ estimator : = HA( Yin),

@ randomized estimator : 5(-) = p(Y1.,)(-) probability
measure on ©.

Examples of randomized estimators :
@ posterior : j(0) = (0| Y1.n) o< L(0; Y1) ,
—_——
likelihood
@ fractional /tempered posterior : () o< [L(6; Y1.,)]° :
@ Gibbs estimator : () o< exp[—n R(0; Yi.,)]
—

loss

Pierre Alquier, RIKEN AIP MMD estimation
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Approximate Bayesian Computation and MMD Contraction of discrepancy-based ABC

Evaluating randomized estimators

Assume in this slide that p* = pg, : “the truth is in the model”.
Statistical performance of an estimator :

e consistency : d(f,6,) — 0 (in proba., a.s., ...)?
n—o0

e rate of convergence : Ey, [d(0,60)] < r, — 07
n—oo
° ...

For a randomized estimator :

@ contraction rate :
Py..;[d(8,60) > r,] —— 0 ('in proba., as., ...)7
n—oo

@ average risk : Ey, [Eqs[d(0,00)]| < r,?

Pierre Alquier, RIKEN AIP MMD estimation




Discrepancy-based ABC

Approximate Bayesian Computation and MMD Contraction of discrepancy-based ABC

Approximate Bayesian Inference

@ Well-known conditions to prove contraction of the
posterior,

@ tools from ML for randomized estimators : PAC-Bayes
bounds.

Given a “non-exact” algorithm targetting /) instead of
7(+| Y1.,) : variational approximations, ABC, etc., we can

@ quantify how well p approximates 7(-|Y1.,) 7

@ study ) as a randomized estimator and study its
contraction/convergence.

Pierre Alquier, RIKEN AIP MMD estimation
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Approximate Bayesian Computation and MMD

Reminder on ABC

Approximate Bayesian Computation (ABC)

INPUT : sample Yi., = (Y1,..., Ys), model (ug,6 € ©),
, statistic S, metric 0 and threshold e.
(i) sample 6 ~ 7,
(ii) sample Z1., = (Z4,...,2Z,) i.id. from py :
o if 8(5(Y1:n), S(Z1:n)) < € return 6,
e else goto (i).

OUTPUT : 9 ~ j.

@ discrete sample space, if S =identity and ¢ =0, ABC is
actually exact : p(+) = w(+| Y1.n)-
@ general case : ABC not exact, we can ask two questions :
© is /(-) a good approximation of m(-|Y1.n)?
@ is ) a good randomized estimator ?

Pierre Alquier, RIKEN AIP MMD estimation
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Approximate Bayesian Computation and MMD Contraction of discrepancy-based ABC

Discrepancy-based ABC

Approximate Bayesian Computation (ABC)
INPUT : sample Yi.,, model (1,0 € ©), , IPM dr and
threshold e.
(i) sample 6 ~ 7,
(ii) sample Z;., i.i.d. from gy :
o if dr(fiy,.,, flz,.,) < € return 6,
o else goto (i).

OUTPUT : 9 ~ j..

Rermark : when dr is the MMD with kernel k,

A (v Azn) = D k(Y0 V) = 23" k(Y1 Z) + D" KZ:, Z).
iJ iJ

i
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Approximate Bayesian Computation and MMD Contraction of discrepancy-based ABC

Approximation of the posterior

@ Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

Contains a general result that can be applied here.

Assume
@ /iy has a continuous density f; and for some neighborhood
V of Yi., we have supyegsup,, oy [11; fo(vi) < +o0.
@ vi., = dx(fiy,,, flv,,) is continuous.
Then
V measurable set A, p.(A) — 7(A|Y1.n)-

e—0
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Approximate Bayesian Computation and MMD ComiEiton eff ¢iraepmnaybmed AR

Assumptions for contraction

(C1) Y-valued Yi.,, = (Y1,...,Y,) iid from pu,, put :
¢ = Inf dr(1, ji.)-

(C2) prior mass condition : there is ¢ > 0, L > 1 such that

(C3) functions in F are bounded :

supsup |f(y)| < b.
feF yey

(C4) the Rademacher complexity R, (F) satisfies
R,(F) — 0.

n—o00
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Approximate Bayesian Computation and MMD ComiEiton eff ¢iraepmnaybmed AR

Contraction of discrepancy-based ABC

Under (C1)-(C4), with € := ¢, = €¢* + &, with €, — 0,
ne2 — oo and €,/MR,(F) — oo. Then, for any sequence

M, > 1,
A({@ee-d( )>e*+r})<2'3L
Pen - Ar\ e, M n =M,
4z, 2 log(%2)

where r, = 3 + 2R,(%) + b\ —=,

S

with probability — 1 with respect to the sample Yi.,.
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Examples

@ Assume R,(F) < c/1/n (MMD, Kolmogorov...).
Take M,, = n and €, = \/log(n)/n to get

2.3t
cn

Pen <{0 €0: d]—'(ﬂ%ﬂ*) >+ r,,}) <

where r, = O (W)

o Larger R,(F) will lead to slower rates.

Pierre Alquier, RIKEN AIP MMD estimation
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Removing (C3)-(C4)

o if we remove (C3)-(C4), we cannot use classical
concentration results on dr (i, fiy,,) and dr (19, [iz,.).

@ we can still provide a result under the assumption that
“some concentration holds”, as

@ Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

for the Wasserstein distance.

@ however, this will impose assumptions on ., {14,0 € ©}
and might lead to slower contraction rates. In our paper,
we illustrate this with MMD with unbounded kernels :

k
mn(F) < \/suPyey (y,)/) = 400
n

Pierre Alquier, RIKEN AIP MMD estimation
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Example : MMD-ABC with unbounded kernel

Under (C1)-(C2), and

(C5) Eypu.[k(Y,Y)] < o0,

(C6) supgee Eznyy[k(Z, Z)] < 400,

€, = € + €, with €, — 0. Then, for some C > 0, for any
sequence M,, > 1, with proba. — 1,

C
ﬁ€n<{9 € O dr(ug, ps) > € + r,,}) < Y
4€, M2
where r, = 3 PR

For example M, = \/n we can get r, = O(1/n*""1).

Pierre Alquier, RIKEN AIP MMD estimation
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Approximate Bayesian Computation and MMD

Experiments in the Gaussian case

251 o 3
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