The nice properties of MMD for statistical estimation

Pierre Alquier

MAD-stat seminar, Toulouse School of Economics. - Nov. 10, 2022

Pierre Alquier, RIKEN AIP MMD estimation

The Maximum Likelihood Estimator (MLE)

Let X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 .

Statistical inference :

- propose a model $(P_{\theta}, \theta \in \Theta)$, assume $P_0 = P_{\theta_0}$.
- compute $\hat{\theta}_n = \hat{\theta}_n(X_1, \ldots, X_n)$.

Letting p_{θ} denote the density of P_{θ} , then

$$\hat{\theta}_n^{MLE} = rgmax_{\theta\in\Theta} L_n(heta), ext{ where } L_n(heta) = \prod_{i=1}^n p_{ heta}(X_i).$$

Example : $P_{(m,\sigma)} = \mathcal{N}(m,\sigma^2)$ then

$$\hat{m} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{m})^2.$$

Some problems with the likelihood and how to fix them Minimum MMD estimation

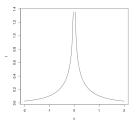
Approximate Bayesian Computation and MMD

Some problems with the likelihood Minimum Distance Estimation (MDE)

MLE not unique / not consistent

Example :

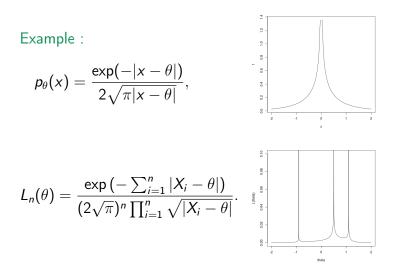
$$p_{\theta}(x) = rac{\exp(-|x- heta|)}{2\sqrt{\pi|x- heta|}},$$



Some problems with the likelihood and how to fix them

Minimum MMD estimation Approximate Bayesian Computation and MMD Some problems with the likelihood Minimum Distance Estimation (MDE)

MLE not unique / not consistent



Some problems with the likelihood Minimum Distance Estimation (MDE)

MLE fails in the presence of outliers

What is an outlier?

Huber proposed the contamination model : with probability ε , X_i is not drawn from P_{θ_0} but from Q that can be anything :

$$P_0 = (1 - \varepsilon) P_{\theta_0} + \varepsilon Q.$$

Example : $P_{\theta} = Unif[0, \theta]$, then

$$L_n(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1}_{\{0 \le X_i \le \theta\}} \Rightarrow \hat{\theta} = \max_{1 \le i \le n} X_i.$$

In the case of the following contamination, the MLE is extremely far from the truth :

$$P_0 = (1 - \varepsilon).\mathcal{U}$$
nif $[0, 1] + \varepsilon.\mathcal{N}(10^{10}, 1)...$

Contents

Some problems with the likelihood Minimum Distance Estimation (MDE)

Some problems with the likelihood and how to fix them

- Some problems with the likelihood
- Minimum Distance Estimation (MDE)
- Minimum MMD estimation
 - Refinement of the bounds
 - Applications and extensions
- Approximate Bayesian Computation and MMD
 - Discrepancy-based ABC
 - Contraction of discrepancy-based ABC

Some problems with the likelihood Minimum Distance Estimation (MDE)

Minimum Distance Estimation

Empirical distribution :
$$\hat{P}_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$
.

Minimum Distance Estimation (MDE)

Let $d(\cdot, \cdot)$ be a metric on probability distributions.

$$\hat{ heta}_d := rgmin_{ heta \in \Theta} d\left(P_{ heta}, \hat{P}_n\right).$$

Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics.

Idea : MDE with an adequate d leads to robust estimation.

Bickel, P. J. (1976). Another look at robustness : a review of reviews and some new developments. Scandinavian Journal of Statistics. Discussion by Sture Holm.

Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estimation. JASA.

Pierre Alquier, RIKEN AIP MMD estimation

Some problems with the likelihood Minimum Distance Estimation (MDE)

Integral Probability Semimetrics

Integral Probability Semimetrics (IPS)

Let $\mathcal F$ be a set of real-valued, measurable functions and put

$$d_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim P}[f(X)] - \mathbb{E}_{X \sim Q}[f(X)] \right|.$$

Müller, A. (1997). Integral probability metrics and their generating classes of functions. Applied Probability.

- assumptions required in order to ensure that $d_{\mathcal{F}}(P, Q) = 0 \Rightarrow P = Q$ (that is, $d_{\mathcal{F}}$ is a metric).
- assumptions required in order to ensure that $d_{\mathcal{F}} < +\infty$.

Some problems with the likelihood Minimum Distance Estimation (MDE)

Non-asymptotic bound for MDE

Theorem 1

- X_1, \ldots, X_n i.i.d from P_0 ,
- for any $f \in \mathcal{F}$, $\sup_{x \in \mathcal{X}} |f(x)| \leq 1$.

Then $\mathbb{E}\left[d_{\mathcal{F}}(P_{\hat{\theta}_{d_{\mathcal{F}}}}, P_0)\right] \leq \inf_{\theta \in \Theta} d_{\mathcal{F}}(P_{\theta}, P_0) + 4.\operatorname{Rad}_n(\mathcal{F}).$

Rademacher complexity

$$\operatorname{Rad}_{n}(\mathcal{F}) := \sup_{P} \mathbb{E}_{Y_{1},...,Y_{n} \sim P} \mathbb{E}_{\epsilon_{1},...,\epsilon_{n}} \left| \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(Y_{i}) \right|$$

where $\epsilon_1, \ldots, \epsilon_n$ are i.i.d Rademacher variables :

$$\mathbb{P}(\epsilon_1=1)=\mathbb{P}(\epsilon_1=-1)=1/2.$$

Some problems with the likelihood Minimum Distance Estimation (MDE)

Example 1 : set of indicators

$$\mathbb{1}_{A}(x) = \begin{cases} 1 \text{ if } x \in A, \\ 0 \text{ if } x \notin A. \end{cases}$$

Image from Wikipedia.

Reminder - Vapnik-Chervonenkis dimension

- Assume that $\mathcal{F} = \{\mathbb{1}_A, A \in \mathcal{A}\}$ for some $\mathcal{A} \subseteq \mathcal{P}(\mathcal{X})$,
 - $S_{\mathcal{F}}(x_1, ..., x_n) := \{(f(x_1), ..., f(x_n)), f \in \mathcal{F}\},$ • $VC(\mathcal{F}) := \max\{n : \exists x_1, ..., x_n, |S_{\mathcal{F}}(x_1, ..., x_n)| = 2^n\}.$

Theorem (Bartlett and Mendelson)

$$\operatorname{Rad}_n(\mathcal{F}) \leq \sqrt{\frac{2.\operatorname{VC}(\mathcal{F})\log(n+1)}{n}}$$

Bartlett, P. L. & Mendelson, S. (2002). Rademacher and Gaussian complexities : Risk bounds and structural results. JMLR.

Some problems with the likelihood Minimum Distance Estimation (MDE)

Example 1 : KS and TV distances

Two classical examples :

- A = {all measurable sets in X}, then d_F(·, ·) is the total variation distance TV(·, ·).
 - $\operatorname{VC}(\mathcal{F}) = +\infty$ when $|\mathcal{X}| = +\infty$,
 - in general, $\operatorname{Rad}_n(\mathcal{F}) \nrightarrow 0$.
- $\mathcal{X} = \mathbb{R}$, $\mathcal{A} = \{(-\infty, x], x \in \mathbb{R}\}$, then $d_{\mathcal{F}}(\cdot, \cdot)$ is the Kolmogorov-Smirnov distance $\mathrm{KS}(\cdot, \cdot)$.
 - KS distance was actually proposed by S. Holm for robust estimation,
 - $VC(\mathcal{F}) = 1$, so :

$$\mathbb{E}\left[\mathrm{KS}(P_{\hat{\theta}_{\mathrm{KS}}}, P_0)\right] \leq \inf_{\theta \in \Theta} \mathrm{KS}(P_{\theta}, P_0) + 4.\sqrt{\frac{2\log(n+1)}{n}}.$$

Example 2 : Maximum Mean Discrepancy (MMD)

- RKHS $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ with kernel $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$.
- If $\|\phi(x)\|_{\mathcal{H}} = k(x,x) \leq 1$ then $\mathbb{E}_{X \sim \mu}[\phi(X)]$ is well-defined .
- The map $\mu \mapsto \mathbb{E}_{X \sim \mu}[\phi(X)]$ is one-to-one if k is characteristic.
- Gaussian kernel $k(x, y) = \exp(-||x y||^2/\gamma^2)$ satisfies these assumption.

$$\mathcal{F} = \{ f \in \mathcal{H} : \|f\|_{\mathcal{H}} \le 1 \}.$$

$$\mathbb{D}_{k}(P,Q) := d_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim P}[f(X)] - \mathbb{E}_{X \sim Q}[f(X)] \right|$$
$$= \left\| \mathbb{E}_{X \sim P}[\phi(X)] - \mathbb{E}_{X \sim Q}[\phi(X)] \right\|_{\mathcal{H}}.$$

Some problems with the likelihood Minimum Distance Estimation (MDE)

Example 2 : MMD

Theorem (Bartlett and Mendelson)

$$\mathcal{F} = \{f \in \mathcal{H} : \|f\|_{\mathcal{H}} \leq 1\} \Rightarrow \operatorname{Rad}_n(\mathcal{F}) \leq \sqrt{\frac{\sup_x k(x,x)}{n}}.$$

Corollary

$$\mathbb{E}\left[\mathbb{D}_{k}(P_{\hat{\theta}_{\mathbb{D}_{k}}},P_{0})\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{k}(P_{\theta},P_{0}) + 4\sqrt{\frac{\sup_{x} k(x,x)}{n}}.$$

Some problems with the likelihood Minimum Distance Estimation (MDE)

Example 2 : MMD

We actually have

$$\begin{split} \mathbb{D}_k^2(P_\theta, \hat{P}_n) &= \mathbb{E}_{X, X' \sim P_\theta}[k(X, X')] - \frac{2}{n} \sum_{i=1}^n \mathbb{E}_{X \sim P_\theta}[k(X_i, X)] \\ &+ \frac{1}{n^2} \sum_{1 \leq i, j \leq n} k(X_i, X_j) \end{split}$$

$$\nabla_{\theta} \mathbb{D}_{k}^{2}(P_{\theta}, \hat{P}_{n})$$

$$= 2\mathbb{E}_{X, X' \sim P_{\theta}} \left\{ \left[k(X, X') - \frac{1}{n} \sum_{i=1}^{n} k(X_{i}, X) \right] \nabla_{\theta} [\log p_{\theta}(X)] \right\}$$

that can be approximated by sampling from P_{θ} .

Example 3 : Wasserstein

Another classical metric belongs to the IPS family :

$$W_{\delta}(P,Q) = \sup_{f : \mathcal{X} \to \mathbb{R} \atop \text{Lip}(f) \leq 1} \left| \mathbb{E}_{X \sim P}[f(X)] - \mathbb{E}_{X \sim Q}[f(X)] \right|$$

where $\operatorname{Lip}(f) := \sup_{x \neq y} |f(x) - f(y)| / \delta(x, y).$

Bound on the Rademacher complexity when \mathcal{X} is bounded :

Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G.R. (2010). Non-parametric estimation of integral probability metrics. IEEE International Symposium on Information Theory.

Minimum Wasserstein estimation studied in :

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). On parameter estimation with the Wasserstein distance. Information and Inference : A Journal of the IMA.

Some problems with the likelihood Minimum Distance Estimation (MDE)

MDE and robustness

Reminder

$$\mathbb{E}\left[d_{\mathcal{F}}(P_{\hat{\theta}_{d_{\mathcal{F}}}},P_0)\right] \leq \inf_{\theta \in \Theta} d_{\mathcal{F}}(P_{\theta},P_0) + 4.\mathrm{Rad}_n(\mathcal{F}).$$

Huber's contamination model : $P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q$.

$$d_{\mathcal{F}}(P_{\theta_{0}}, P_{0}) = \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim P_{\theta_{0}}} f(X) - (1 - \varepsilon) \mathbb{E}_{X \sim P_{\theta_{0}}} f(X) - \varepsilon \mathbb{E}_{X \sim Q} f(X) \right|$$

$$= \sup_{f \in \mathcal{F}} \left| \varepsilon \mathbb{E}_{X \sim P_{\theta_{0}}} f(X) - \varepsilon \mathbb{E}_{X \sim Q} f(X) \right|$$

$$= \varepsilon. d_{\mathcal{F}}(P_{\theta_{0}}, Q) \leq 2\varepsilon \quad \text{if for any } f \in \mathcal{F}, \sup_{x} |f(x)| \leq 1$$

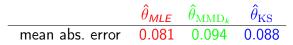
Corollary - in Huber's contamination model

$$\mathbb{E}\left[d_{\mathcal{F}}(P_{\hat{\theta}_{d_{\mathcal{F}}}}, P_{\theta_0})\right] \leq 4\varepsilon + 4. \mathrm{Rad}_n(\mathcal{F}).$$

Some problems with the likelihood Minimum Distance Estimation (MDE)

MDE and robustness : toy experiment

Model : $\mathcal{N}(\theta, 1)$, X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the exp. 200 times. Kernel $k(x, y) = \exp(-|x - y|)$.



Now, $\varepsilon = 2\%$ of the observations drawn from a Cauchy.

mean abs. error 0.276 0.095 0.088

Now, $\varepsilon = 1\%$ are replaced by 1,000.

mean abs. error 10.008 0.088 0.082

Refinement of the bounds Applications and extensions

Contents

Some problems with the likelihood and how to fix them
Some problems with the likelihood
Minimum Distance Estimation (MDE)

- 2 Minimum MMD estimation
 - Refinement of the bounds
 - Applications and extensions
- 3 Approximate Bayesian Computation and MMD
 - Discrepancy-based ABC
 - Contraction of discrepancy-based ABC

Refinement of the bounds Applications and extensions

Improving the constant

From now, we assume that $\sup_{x} k(x, x) \leq 1$. We know :

$$\mathbb{E}\left[\mathbb{D}_k(P_{\hat{\theta}_{\mathbb{D}_k}},P_0)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_k(P_\theta,P_0) + \frac{4}{\sqrt{n}}.$$

We will now prove a better result without using the Rademacher complexity :

Theorem

$$\mathbb{E}\left[\mathbb{D}_k(P_{\hat{\theta}_{\mathbb{D}_k}},P_0)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_k(P_\theta,P_0) + \frac{2}{\sqrt{n}}.$$

Refinement of the bounds Applications and extensions

Proof of the theorem : preliminary lemma

Lemma

For any P_0 , when X_1, \ldots, X_n are i.i.d from P_0 ,

$$\mathbb{E}\left[\mathbb{D}_{k}\left(\hat{P}_{n},P^{0}\right)\right]\leq\frac{1}{\sqrt{n}}$$

$$\begin{split} \left\{ \mathbb{E} \left[\mathbb{D}_{k} \left(\hat{P}_{n}, P^{0} \right) \right] \right\}^{2} &\leq \mathbb{E} \left[\mathbb{D}_{k}^{2} \left(\hat{P}_{n}, P^{0} \right) \right] \\ &= \mathbb{E} \left[\left\| (1/n) \sum (\mu(\delta_{X_{i}}) - \mu(P_{0})) \right\|_{\mathcal{H}}^{2} \right] \\ &= (1/n) \mathbb{E} \left[\left\| \mu(\delta_{X_{1}}) - \mu(P_{0}) \right\|_{\mathcal{H}}^{2} \right] \\ &\leq 1/n. \end{split}$$

Refinement of the bounds Applications and extensions

Proof of the theorem

$$\begin{aligned} \forall \theta, \ \mathbb{D}_k \left(P_{\hat{\theta}}, P^0 \right) &\leq \mathbb{D}_k \left(P_{\hat{\theta}}, \hat{P}_n \right) + \mathbb{D}_k \left(\hat{P}_n, P^0 \right) \\ &\leq \mathbb{D}_k \left(P_{\theta}, \hat{P}_n \right) + \mathbb{D}_k \left(\hat{P}_n, P^0 \right) \\ &\leq \mathbb{D}_k \left(P_{\theta}, P^0 \right) + 2\mathbb{D}_k \left(\hat{P}_n, P^0 \right) \end{aligned}$$

$$\mathbb{E}\left[\mathbb{D}_{k}\left(P_{\hat{\theta}},P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{k}(P_{\theta},P_{0}) + \frac{2}{\sqrt{n}}.$$

Refinement of the bounds Applications and extensions

A bound in probability

Thanks to McDiarmid's inequality :

Theorem

For any P_0 , when X_1, \ldots, X_n are i.i.d from P_0 , with probability at least $1 - \delta$,

$$\mathbb{D}_{k}\left(P_{\hat{\theta}}, P^{0}\right) \leq \inf_{\theta \in \Theta} \mathbb{D}_{k}\left(P_{\theta}, P^{0}\right) + \frac{2 + 2\sqrt{2\log\left(\frac{1}{\delta}\right)}}{\sqrt{n}}$$

Joint work with Badr-Eddine Chérief-Abdellatif (CNRS).

Chérief-Abdellatif, B.-E. and Alquier, P. Finite Sample Properties of Parametric MMD Estimation : Robustness to Misspecification and Dependence. Bernoulli, 2022.

Refinement of the bounds Applications and extensions

Example : Gaussian mean estimation

Example : $P_{\theta} = \mathcal{N}(\theta, \sigma^2 I)$ for $\theta \in \mathbb{R}^d$. Using a Gaussian kernel $k(x, y) = \exp(-||x - y^2||/\gamma^2)$,

$$\mathbb{D}_{k}^{2}\left(P_{\theta}, P_{\theta'}\right) = 2\left(\frac{\gamma^{2}}{4\sigma^{2} + \gamma^{2}}\right)^{\frac{d}{2}} \left[1 - \exp\left(-\frac{\|\theta - \theta'\|^{2}}{4\sigma^{2} + \gamma^{2}}\right)\right].$$

Together with the previous result, this gives :

$$\begin{split} \|\hat{\theta}_n^{MMD} - \theta_0\|^2 \\ \leq -(4\sigma^2 + \gamma^2) \log\left[1 - 4\frac{(1 + \sqrt{2\log 1/\delta})^2}{n} \left(\frac{4\sigma^2 + \gamma^2}{\gamma^2}\right)^{\frac{d}{2}}\right]. \end{split}$$

$$\gamma = 2d\sigma^2 \Rightarrow$$
$$\|\hat{\theta}_n^{MMD} - \theta_0\|^2 \le d\sigma^2 \frac{8e(1 + \sqrt{2\log 1/\delta})^2}{n} (1 + o(1)).$$

Refinement of the bounds Applications and extensions

Variance-aware bounds (1/2)

$$\begin{split} \left\{ \mathbb{E}\left[\mathbb{D}_{k}\left(\hat{P}_{n},P^{0}\right)\right]\right\}^{2} &\leq \mathbb{E}\left[\mathbb{D}_{k}^{2}\left(\hat{P}_{n},P^{0}\right)\right] \\ &= \mathbb{E}\left[\left\|\left(1/n\right)\sum\left(\mu(\delta_{X_{i}})-\mu(P_{0})\right)\right\|_{\mathcal{H}}^{2}\right] \\ &= (1/n)\underbrace{\mathbb{E}\left[\left\|\mu(\delta_{X_{1}})-\mu(P_{0})\right\|_{\mathcal{H}}^{2}\right]}_{=:v_{k}(P_{0})} \end{split}$$

Lemma - variance-aware version $\mathbb{E}\left[\mathbb{D}_{k}\left(\hat{P}_{n}, P^{0}\right)\right] \leq \sqrt{\frac{\nu_{k}(P_{0})}{n}} \leq \sqrt{\frac{1}{n}}.$

Pierre Alquier, RIKEN AIP MMD estimation

Refinement of the bounds Applications and extensions

Variance-aware bounds (2/2)

Theorem – bound in expectation

$$\mathbb{E}\left[\mathbb{D}_{k}(P_{\hat{\theta}}, P_{0})\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{k}(P_{\theta}, P_{0}) + 2\sqrt{\frac{\boldsymbol{v}_{k}(P_{0})}{n}}$$

Theorem – bound in probability

With probability at least $1-\delta$,

$$\mathbb{D}_k\left(P_{\hat{\theta}},P^0\right) \leq \inf_{\theta\in\Theta} \mathbb{D}_k\left(P_{\theta},P^0\right) + 2\sqrt{\frac{\mathsf{v}_k(P_0)2\log\frac{1}{\delta}}{n}} + \frac{8\log\frac{1}{\delta}}{3n}.$$

Joint work with Geoffrey Wolfer (RIKEN AIP).

Wolfer, G. and Alquier, P. Variance-Aware Estimation of Kernel Mean Embedding. Preprint arXiv :2210.06672.

Pierre Alquier, RIKEN AIP MMD estimation

Refinement of the bounds Applications and extensions

Upper-bounding the variance $v_k(P_0)$

In the case of the Gaussian kernel

$$k(x,y) = \exp(-\|x-y\|^2/\gamma^2)$$

we have

$$v_{k}(P_{0}) \leq 1 - \exp\left[-\frac{2\mathrm{Tr}(\mathsf{Var}_{P_{0}}(\mathsf{X}))}{\gamma^{2}}\right] \leq \begin{cases} \frac{2\mathrm{Tr}(\mathsf{Var}_{P_{0}}(\mathsf{X}))}{\gamma^{2}}\\ 1. \end{cases}$$

Example : Gaussian mean estimation (continued).

Using the variance aware bound

$$\gamma = \gamma_n o +\infty \Rightarrow \|\hat{ heta}_n^{MMD} - heta_0\|^2 \le d\sigma^2 rac{4\log 1/\delta}{n}(1+o(1)).$$

Refinement of the bounds Applications and extensions

Empirical bound

In practice, we can estimate $v_k(P_0)$ by

$$\hat{\mathbf{v}}_{k} := \frac{1}{n-1} \sum_{i=1}^{n} \left(k(X_{i}, X_{i}) - \frac{1}{n} \sum_{j=1}^{n} k(X_{i}, X_{j}) \right)$$

We have $\mathbb{E}(\hat{\mathbf{v}}_k) = \mathbf{v}_k(P_0)$, and

Theorem – bound with empirical variance

Assume that $k(x, y) = \psi(x - y) \in [a, b]$. Then, with probability at least $1 - \delta$,

$$\mathbb{D}_k\left(P_{\hat{\theta}}, P^0\right) \leq \inf_{\theta \in \Theta} \mathbb{D}_k\left(P_{\theta}, P^0\right) + 2\sqrt{\frac{\hat{\mathbf{v}}_k 2\log\frac{1}{\delta}}{n}} + \frac{32\sqrt{b-a}\log\frac{1}{\delta}}{3n}.$$

Refinement of the bounds Applications and extensions

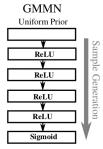
Contents

Some problems with the likelihood and how to fix them
Some problems with the likelihood
Minimum Distance Estimation (MDE)

- 2 Minimum MMD estimation
 - Refinement of the bounds
 - Applications and extensions
- 3 Approximate Bayesian Computation and MMD
 - Discrepancy-based ABC
 - Contraction of discrepancy-based ABC

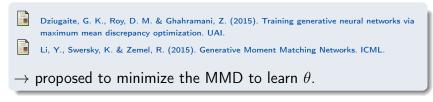
Refinement of the bounds Applications and extensions

Generative Adversarial Networks (GAN, 1/2)



Generative model $X \sim P_{\theta}$:

- $U \sim \text{Unif}[0, 1]^d$,
- $X = F_{\theta}(U)$ where F_{θ} is some NN with weights θ .



Pierre Alquier, RIKEN AIP MMD estimation

GAN (2/2)

Refinement of the bounds Applications and extensions

Results from Dziugaite et al. (2015).

Refinement of the bounds Applications and extensions

Inference for Systems of SDEs (1/2)

This paper developped the asymptotic theory of MMD :

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative Models with Maximum Mean Discrepancy. Preprint arXiv :1906.05944.

They also applied the method to inference in SDEs :

$$\mathrm{d}X_t = b(X_t, \theta_1)\mathrm{d}t + \sigma(X_t, \theta_2)\mathrm{d}W_t$$

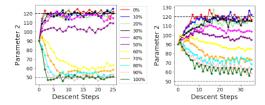
- easy to sample from the model with a given $\theta = (\theta_1, \theta_2)$,
- they propose a method to approximate the gradient of the MMD criterion.

Refinement of the bounds Applications and extensions

Inference for Systems of SDEs (2/2)

Example in a (stochastic) Lotka-Volterra model.

Results from Briol et al. (2019) : compare MMD minimization to Wasserstein minimization.



Regression

- problem with regression : we want to specify and estimate a parametric model P_{θ(X)} for Y|X. MMD requires to specify a model for (X, Y).
- natural idea : estimate the distribution of X by $\frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$ and use the MMD procedure on $P_{\theta(X)}$.
- the previous theory shows directly that we estimate the distribution of (X, Y) consistently.
- it is far more difficult to prove that we estimate the distribution of Y|X.

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via Maximum Mean Discrepancy. Preprint arXiv.

Joint work with M. Gerber (Bristol).

Refinement of the bounds Applications and extensions

Copulas

About R.Hom The.R. Softwa R.Sour R.Bina Packag Other Docum Manua EADs Contril

- another semi-parametric model : copulas.
- asymptotic theory + R package.

With B.-E. Chérief-Abdellatif (CNRS), J.-D. Fermanian (ENSAE Paris), A. Derumigny (TU Delft).

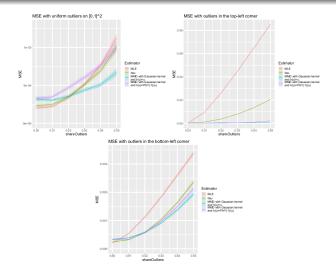
Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. Estimation of copulas via Maximum Mean Discrepancy. JASA, to appear.

	MMDCopula: Robust Estimation of Copulas by Maximum Mean Discrepancy	
R	Provides functions for the robust estimation of parametric families of copulas using minimization of the Maximum Mean Discrepancy, following the article Aquier, Chérief-Abdellat Derumigny and Fernanian (2020)	

Please use the canonical form https://CRAN.R-project.org/package=MMDCopula to link to this page

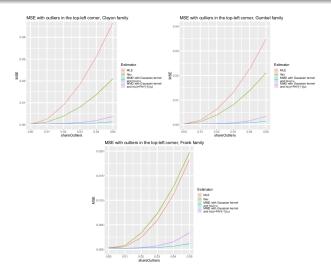
Refinement of the bounds Applications and extensions

Example : Gaussian copulas



Refinement of the bounds Applications and extensions

Example : other models



ion Contraction of discrepancy-based MD

Contents

Some problems with the likelihood and how to fix them
Some problems with the likelihood
Minimum Distance Estimation (MDE)

- 2 Minimum MMD estimation
 - Refinement of the bounds
 - Applications and extensions
- Approximate Bayesian Computation and MMD
 - Discrepancy-based ABC
 - Contraction of discrepancy-based ABC

Discrepancy-based ABC Contraction of discrepancy-based ABC

Co-authors and paper

S. Legramanti, D. Durante & P. Alquier (2022). Concentration and robustness of discrepancy-based ABC via Rademacher complexity. Preprint arXiv :2206.06991.

Sirio Legramanti (University of Bergamo)

Daniele Durante (Bocconi University, Milan)

Estimators, randomized estimators and Bayes rule

- $Y_{1:n} = Y_1, \ldots, Y_n$ i.i.d from μ^* ,
- model : $(\mu_{ heta}, heta \in \Theta)$,
- estimator : $\hat{\theta} = \hat{\theta}(Y_{1:n})$,
- randomized estimator : ρ̂(·) = ρ̂(Y_{1:n})(·) probability measure on Θ.

Examples of randomized estimators :

• posterior : $\hat{\rho}(\theta) = \pi(\theta|Y_{1:n}) \propto \mathcal{L}(\theta; Y_{1:n}) \pi(\theta)$,

likelihood prior

- fractional/tempered posterior : $\hat{\rho}(\theta) \propto [\mathcal{L}(\theta; Y_{1:n})]^{\alpha} \pi(\theta)$,
- Gibbs estimator : $\hat{\rho}(\theta) \propto \exp[-\eta R(\theta; Y_{1:n})]\pi(\theta)$.

Evaluating randomized estimators

Assume in this slide that $\mu^* = \mu_{\theta_0}$: "the truth is in the model". Statistical performance of an estimator :

consistency : d(θ̂, θ₀) → 0 (in proba., a.s., ...)?
rate of convergence : E_{Y1:n}[d(θ̂, θ₀)] ≤ r_n → 0?
...

For a randomized estimator :

contraction rate :

$$\mathbb{P}_{\theta \sim \hat{\rho}}[d(\theta, \theta_0) \ge r_n] \xrightarrow[n \to \infty]{} 0 \text{ (in proba., a.s., ...)}?$$

• average risk :
$$\mathbb{E}_{Y_{1:n}} \Big[\mathbb{E}_{\theta \sim \hat{\rho}}[d(\theta, \theta_0)] \Big] \leq r_n$$
?

Discrepancy-based ABC Contraction of discrepancy-based ABC

Approximate Bayesian Inference

- Well-known conditions to prove contraction of the posterior,
- tools from ML for randomized estimators : PAC-Bayes bounds.

Given a "non-exact" algorithm targetting $\hat{\rho}$ instead of $\pi(\cdot|Y_{1:n})$: variational approximations, ABC, etc., we can

- quantify how well $\hat{\rho}$ approximates $\pi(\cdot|Y_{1:n})$?
- study $\hat{\rho}$ as a randomized estimator and study its contraction/convergence.

Discrepancy-based ABC Contraction of discrepancy-based ABC

Reminder on ABC

Approximate Bayesian Computation (ABC)

INPUT : sample $Y_{1:n} = (Y_1, \ldots, Y_n)$, model $(\mu_{\theta}, \theta \in \Theta)$, prior π , statistic *S*, metric δ and threshold ϵ .

(i) sample
$$\theta \sim \pi$$
,
(ii) sample $Z_{1:n} = (Z_1, \dots, Z_n)$ i.i.d. from μ_{θ} :
• if $\delta(S(Y_{1:n}), S(Z_{1:n})) \leq \epsilon$ return θ ,
• else goto (i).

OUTPUT : $\vartheta \sim \hat{\rho}$.

- discrete sample space, if S =identity and $\epsilon = 0$, ABC is actually exact : $\hat{\rho}(\cdot) = \pi(\cdot|Y_{1:n})$.
- $\bullet\,$ general case : ABC not exact, we can ask two questions :
 - is $\hat{\rho}(\cdot)$ a good approximation of $\pi(\cdot|Y_{1:n})$?
 - **2** is $\hat{\rho}$ a good randomized estimator?

Discrepancy-based ABC Contraction of discrepancy-based ABC

Discrepancy-based ABC

Approximate Bayesian Computation (ABC)

INPUT : sample $Y_{1:n}$, model $(\mu_{\theta}, \theta \in \Theta)$, prior π , IPM $d_{\mathcal{F}}$ and threshold ϵ .

(i) sample
$$\theta \sim \pi$$
,
(ii) sample $Z_{1:n}$ i.i.d. from μ_{θ} :
• if $d_{\mathcal{F}}(\hat{\mu}_{Y_{1:n}}, \hat{\mu}_{Z_{1:n}}) \leq \epsilon$ return θ ,
• else goto (i).

OUTPUT : $\vartheta \sim \hat{\rho}_{\epsilon}$.

Rermark : when $d_{\mathcal{F}}$ is the MMD with kernel k,

$$d_{\mathcal{F}}(\hat{\mu}_{Y_{1:n}}, \hat{\mu}_{Z_{1:n}}) = \sum_{i,j} k(Y_i, Y_j) - 2 \sum_{i,j} k(Y_i, Z_j) + \sum_{i,j} k(Z_i, Z_j).$$

Discrepancy-based ABC Contraction of discrepancy-based ABC

Approximation of the posterior

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian Computation with the Wasserstein distance. JRSS-B.

Contains a general result that can be applied here.

Theorem

Assume

μ_θ has a continuous density f_θ and for some neighborhood V of Y_{1:n} we have sup_{θ∈Θ} sup_{v1:n∈V} ∏ⁿ_{i=1} f_θ(v_i) < +∞.
 v_{1:n} → d_F(μ̂_{Y1:n}, μ̂_{v1:n}) is continuous.

Then

$$\forall \text{ measurable set } A, \ \hat{\rho}_{\epsilon}(A) \xrightarrow[\epsilon \to 0]{} \pi(A|Y_{1:n}).$$

Discrepancy-based ABC Contraction of discrepancy-based ABC

Assumptions for contraction

(C1)
$$\mathcal{Y}$$
-valued $Y_{1:n} = (Y_1, \ldots, Y_n)$ i.i.d from μ_* , put :

$$\epsilon^* := \inf_{\theta \in \Theta} d_{\mathcal{F}}(\mu_{\theta}, \mu_*).$$

(C2) prior mass condition : there is $c > 0, L \ge 1$ such that

$$\pi \Big(ig\{ heta \in \Theta : \textit{d}_{\mathcal{F}}(\mu_ heta,\mu_*) - \epsilon^* \leq \epsilon ig\} \Big) \geq \textit{c} \epsilon^L$$

(C3) functions in \mathcal{F} are bounded :

 $\sup_{f\in\mathcal{F}}\sup_{y\in\mathcal{Y}}|f(y)|\leq b.$

(C4) the Rademacher complexity $\mathfrak{R}_n(\mathcal{F})$ satisfies

$$\mathfrak{R}_n(\mathcal{F}) \xrightarrow[n \to \infty]{} 0.$$

Discrepancy-based ABC Contraction of discrepancy-based ABC

Contraction of discrepancy-based ABC

Theorem 1

Under (C1)-(C4), with $\epsilon := \epsilon_n = \epsilon^* + \overline{\epsilon}_n$ with $\overline{\epsilon}_n \to 0$, $n\overline{\epsilon}_n^2 \to \infty$ and $\overline{\epsilon}_n/\mathfrak{R}_n(\mathcal{F}) \to \infty$. Then, for any sequence $M_n > 1$,

$$\hat{\rho}_{\epsilon_n}\Big(\big\{\theta\in\Theta: d_{\mathcal{F}}(\mu_{\theta},\mu_*)>\epsilon^*+r_n\big\}\Big)\leq \frac{2\cdot 3^d}{cM_n}$$

where $r_n=\frac{4\overline{\epsilon}_n}{3}+2\mathfrak{R}_n(\mathfrak{F})+b\sqrt{\frac{2\log(\frac{M_n}{\overline{\epsilon}_n^L})}{n}},$

with probability $\rightarrow 1$ with respect to the sample $Y_{1:n}$.

Discrepancy-based ABC Contraction of discrepancy-based ABC

Examples

• Assume
$$\mathfrak{R}_n(\mathcal{F}) \leq c\sqrt{1/n}$$
 (MMD, Kolmogorov...).
Take $M_n = n$ and $\overline{\epsilon}_n = \sqrt{\log(n)/n}$ to get

$$\hat{\rho}_{\epsilon_n} \Big(\big\{ \theta \in \Theta : d_{\mathcal{F}}(\mu_{\theta}, \mu_*) > \epsilon^* + r_n \big\} \Big) \leq \frac{2 \cdot 3^L}{cn}$$

where $r_n = \mathcal{O} \Big(\sqrt{\log(n)/n} \Big).$

• Larger $\mathfrak{R}_n(\mathcal{F})$ will lead to slower rates.

Discrepancy-based ABC Contraction of discrepancy-based ABC

Removing (C3)-(C4)

- if we remove (C3)-(C4), we cannot use classical concentration results on d_F (μ_{*}, μ̂_{Y1:n}) and d_F (μ_θ, μ̂_{Z1:n}).
- we can still provide a result under the assumption that "some concentration holds", as

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian Computation with the Wasserstein distance. JRSS-B.

for the Wasserstein distance.

 however, this will impose assumptions on μ_{*}, {μ_θ, θ ∈ Θ} and might lead to slower contraction rates. In our paper, we illustrate this with MMD with unbounded kernels :

$$\mathfrak{R}_n(\mathcal{F}) \leq \sqrt{\frac{\sup_{y \in \mathcal{Y}} k(y, y)}{n}} = +\infty.$$

Example : MMD-ABC with unbounded kernel

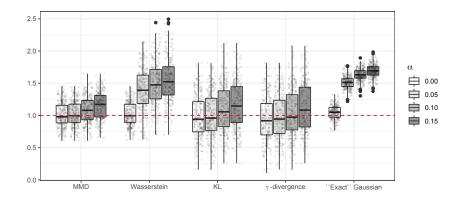
Theorem 2

Under (C1)-(C2), and
(C5)
$$\mathbb{E}_{Y \sim \mu_*}[k(Y, Y)] < +\infty$$
,
(C6) $\sup_{\theta \in \Theta} \mathbb{E}_{Z \sim \mu_{\theta}}[k(Z, Z)] < +\infty$,
 $\epsilon_n = \epsilon^* + \bar{\epsilon}_n$ with $\bar{\epsilon}_n \to 0$. Then, for some $C > 0$, for any
sequence $M_n > 1$, with proba. $\to 1$,

$$\hat{\rho}_{\epsilon_n} \left(\left\{ \theta \in \Theta : d_{\mathcal{F}}(\mu_{\theta}, \mu_*) > \epsilon^* + r_n \right\} \right) \le \frac{C}{M_n}$$
where $r_n = \frac{4\bar{\epsilon}_n}{3} + \frac{M_n^2}{n^2\bar{\epsilon}^{2L}}$.
For example $M_n = \sqrt{n}$ we can get $r_n = \mathcal{O}(1/n^{2L+1})$.

Discrepancy-based ABC Contraction of discrepancy-based ABC

Experiments in the Gaussian case



Discrepancy-based ABC Contraction of discrepancy-based ABC

La fin

終わり ありがとう ございます。

Pierre Alquier, RIKEN AIP MMD estimation