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Bayesian inference
Definition of variational approximations
Concentration of variational approximations of the posterior

Notations
Assume that we observe X1, . . . , Xn i.i.d from Pθ0 in a model
{Pθ, θ ∈ Θ} dominated by Q : dPθ

dQ = pθ. Prior π on Θ.

The likelihood

Ln(θ) =
n∏

i=1

pθ(Xi)

The posterior

πn(dθ) ∝ Ln(θ)π(dθ).

The tempered posterior - 0 < α ≤ 1

πn,α(dθ) ∝ [Ln(θ)]απ(dθ).
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Computation of the posterior

explicit form (conjugate models),

MCMC algorithms : Metropolis-Hastings, Gibbs sampler,
Langevin Monte Carlo...

But...
when the dimension is large, the convergence of MCMC
can be extremely slow,
when the model is complex or when the sample size is
large, each evaluation of πn,α(θ) can be expensive.

For these reasons, in the past 20 years, many methods
targeting an approximation of πn,α became popular : ABC, EP
algorithm, variational inference, approximate MCMC ...
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Variational approximations : definitions
Idea of VB : chose a family F of probability distributions on Θ
and approximate πn,α by a distribution in F :

π̃n,α := arg min
ρ∈F
K(ρ, πn,α).

Examples :
parametric approximation

F =
{
N (µ,Σ) : µ ∈ Rd ,Σ ∈ S+

d

}
.

mean-field approximation, Θ = Θ1 ×Θ2 and

F : {ρ : ρ(dθ) = ρ1(dθ1)× ρ2(dθ2)} .
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Empirical lower bound (ELBO)

Note that :

π̃n,α = arg min
ρ∈F
K(ρ, πn,α)

= arg min
ρ∈F

{
−α
∫

1
n

n∑
i=1

log pθ(Xi)ρ(dθ) +K(ρ, π)

}
︸ ︷︷ ︸

−ELBO(ρ)

.

So we have the equivalent definition :

π̃n,α := arg max
ρ∈F

ELBO(ρ).
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Consistency results

3 papers (2017) :

1 consistency and rates of convergence for α < 1 :

P. Alquier & J. Ridgway. Concentration of tempered posteriors and of their variational
approximations. To appear in The Annals of Statistics.

2 extension to models with hidden variables :

A. Bhattacharya, D. Pati & Y. Yang. Bayesian fractional posteriors. The Annals of Statistics,
2019.

3 extension to α = 1 :

F. Zhang & C. Gao. Convergence Rates of Variational Posterior Distributions. Preprint arXiv,
2017.
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Sequential estimation problem
Online variational inference
Simulations

Sequential estimation problem

1 1 initialize θ1,
2 x1 revealed,
3 incur loss
− log pθ1(x1)

2 1 update θ1 → θ2,
2 x2 revealed,
3 incur loss
− log pθ2(x2)

3 1 update θ2 → θ3,
2 x3 revealed,
3 incur loss
− log pθ3(x3)

4 . . .

Objective : make sure that
we learn to predict well as fast

as possible. Keep

T∑
t=1

[− log pθt (xt)]

as small as possible for any T ,
without stochastic

assumptions on the data.
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Reference

The regret :

R(T ) =
T∑
t=1

[− log pθt (xt)]

− inf
θ∈Θ

T∑
t=1

[− log pθ(xt)].

Pierre Alquier Generalization bounds for online variational inference



Introduction : variational Bayesian inference
Online variational inference

Sequential estimation problem
Online variational inference
Simulations

Reference

The regret :

R(T ) =
T∑
t=1

[− log pθt (xt)]

− inf
θ∈Θ

T∑
t=1

[− log pθ(xt)].

Pierre Alquier Generalization bounds for online variational inference



Introduction : variational Bayesian inference
Online variational inference

Sequential estimation problem
Online variational inference
Simulations

EWA strategy / multipicative update...

learning rate α > 0.
initialize p1 = π (the prior).

Algorithm 2 Exponentially Weighted Aggregation
1: for t = 1, 2, . . . do
2: θt = Eθ∼pt [θ],
3: xt revealed, update pt+1(dθ) = [pθ(xt)]αpt(dθ)∫

[pϑ(xt)]αpt(dϑ)
.

4: end for

Note that pt = πn,α the tempered posterior, so problem : how
can we compute θt ?

Pierre Alquier Generalization bounds for online variational inference
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A regret bound for EWA

From now, θ 7→ [− log pθ(xt)] is convex + bounded : | · | ≤ C .

Theorem
T∑
t=1

[− log pθt (xt)] ≤ inf
p

[
T∑
t=1

Eθ∼p[− log pθ(xt)]

+
αC 2T

2
+
K(p, π)

α

]
.

Under similar assumptions than in the batch case, that is, the
prior gives enough mass to relevant θ, and α ∼ 1/

√
T ,

T∑
t=1

[− log pθt (xt)] ≤ inf
θ∈Θ

T∑
t=1

[− log pθ(xt)] + cst.
√
T
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T∑
t=1

[− log pθt (xt)] ≤ inf
θ∈Θ

T∑
t=1

[− log pθ(xt)] + cst.
√
T

1
T

T∑
t=1

log
q(xt)

pθt (xt)
≤ inf

θ∈Θ

1
T

T∑
t=1

log
q(xt)

pθ(xt)
+

cst√
T
.

Assuming that x1, . . . , xT are actually i.i.d from Q, with
density q, define

θ̂T =
1
T

T∑
t=1

θT ,

we have (“online-to-batch” conversion) :

E
[
K
(
Q,Pθ̂T

)]
≤ inf

θ∈Θ
K (Q,Pθ) +

cst√
T
.
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Variational approximations of EWA

B.-E. Chérief-Abdellatif, P. Alquier & M. E. Khan. A Generalization Bound for Online Variational
Inference. Preprint arXiv, 2019.

Parametric variational approximation : F = {qµ, µ ∈ M}.
Objective : propose a way to update µt → µt+1 so that qµt
leads to similar performances as pt in EWA...
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SVA and SVB strategies
Algorithm 3 SVA (Sequential Variational Approximation)
1: for t = 1, 2, . . . do
2: θt = Eθ∼qµt [θ],
3: xt revealed, update

µt+1 = arg min
µ∈M

[
µT∇µ

t∑
i=1

Eθ∼qµ[− log pθ(xi)] +
K(qµ, π)

α

]
.

4: end for

SVB (Streaming Variational Bayes) has update

µt+1 = arg min
µ∈M

[
µT∇µEθ∼qµ[− log pθ(xt)] +

K(qµ, qµt )

α

]
.
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NGVI strategy

NGVI (Natural Gradient Variational Inference) : fix some
β > 0,

µt+1

= arg min
µ∈M

[
µT∇µEθ∼qµ[− log pθ(xt)]+

K(qµ, π)

α
+
K(qµ, qµt )

β

]
.

M. E. Khan & W. Lin. Conjugate-computation variational inference : Converting variational
inference in non-conjugate models to inferences in conjugate models. AISTAT, 2017.
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An example : SVB with Gaussian approximations
As an example, assume that θ ∈ Rd , the prior is
π = N (0, s2I ) and that we use the variational approximation

family : qµ = qm,σ = N

m,

 σ2
1 . . . 0
... . . . ...
0 . . . σ2

d


 .

In this case, the update in SVB is :

mt+1 = mt − ασ2
t �∇m=mtEθ∼qm,σt [− log pθ(xt)]

σt+1 = σt � h

(
ασt∇σ=σtEθ∼qmt ,σ

[− log pθ(xt)]

2

)
where � means “componentwise multiplication” and
h(x) =

√
1 + x2 − x is also applied componentwise. We also

have explicit formulas for SVA and NGVI (see the paper).
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A regret bound for SVA

Theorem (Chérief-Abdellatif, A. & Khan)

Assume that µ 7→ Eθ∼qµ[− log pθ(xt)] is L-Lipschitz and
convex.

Assume that µ 7→ K(pµ, π) is γ-strongly convex.
Then SVA satisfies :

T∑
t=1

[− log pθt (xt)]

≤ inf
µ∈M

{
Eθ∼qµ

[
T∑
t=1

[− log pθ(xt)]

]
+
αL2T

γ
+
K(qµ, π)

α

}
.

For SVB : some results in the Gaussian case. For NGVI : we
were not able to derive regret bounds until now.
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Test on a simulated dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Breast dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Pima Indians dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Boston Housing dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Forest Cover Type dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Conclusions

1 Using online-to-batch conversion, we now have algorithms
for variational inference with provable statistical
properties after a finite number of steps.

2 SVA, SVB competitive with OGA (online gradient
algorithm, “non-Bayesian”).

3 NGVI is the best method on all datasets. Its theoretical
analysis is thus an important open problem. Cannot be
done with our current techniques (using natural
parameters in exponential models lead to non-convex
objectives).
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Thank you !
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