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To keep the results as simple as possible :
S = (X1, . . . ,Xn) i.i.d. from P ,
ℓ(x , θ) bounded by 1.

Generalization risk : R(θ) = EX∼P [ℓ(X , θ)].
Objective : θ∗ = argminθ∈Θ R(θ).
Risk of the “Bayes” procedure ρ : Eθ∼ρ[R(θ)].

Theorem (stated informally)

ES

{
Eθ∼ρ[R(θ)]

}
≤ R(θ∗) + c

√
d log(n)

n

where d = d(P , π) defined in the next slide, for α well chosen.
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N(θ∗, s) := {θ ∈ Θ : R(θ)− R(θ∗) ≤ s}.

d = d(P , π) is the smallest number such that, for any s small
enough :

π(N(θ∗, s)) ≥ sd .

Pierre Alquier, ESSEC Bayesian meta-learning
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How do we prove the theorem ?

ρ(θ) ∝ π(θ)e−α
∑n

i=1 ℓ(xi ,θ)

= argmin
p∈Prob(Θ)

{
Eθ∼p

[
1
n

n∑
i=1

ℓ(xi , θ)

]
+

KL(p, π)

αn

}
.

PAC-Bayes / Information bounds

ES

{
Eθ∼ρ[R(θ)]

}
≤ inf

p

{
Eθ∼p[R(θ)] + α +

KL(p, π)

αn

}
.

In particular, for p as the restriction of π to N(θ∗, s),

ES

{
Eθ∼ρ[R(θ)]

}
≤ inf

s>0

{
R(θ∗) + s + α +

d log 1
s

αn

}
.
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Old result : in a “noiseless setting”, when there is a θ such
that ℓ(x , θ) = 0 almost surely for x ∼ P ,

ES

{
Eθ∼ρ[R(θ)]

}
≤ R(θ∗)︸ ︷︷ ︸

=0

+c
d log(n)

n
.

Similar fast rates obtained in classification under
Mammen and Tsybakov margin assumption (1999).
Also with Lipschitz and strongly convex losses ℓ(x , ·) by
Bartlett and Mendelson (2006).

All these assumptions turned out to be a special case of :

Bernstein condition

Ex∼P

{
[ℓ(x , θ)− ℓ(x , θ∗)]2

}
≤ C [R(θ)− R(θ∗)] .
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What about variational Bayes ?

Let W be a subset of Prob(Θ), and put :

ρW(θ) = argmin
p∈����Prob(Θ)W

{
Eθ∼p

[
1
n

n∑
i=1

ℓ(xi , θ)

]
+

KL(p, π)

αn

}
.

P. Alquier, J. Ridgway , N. Chopin (2016). On the Properties of Variational Approximations of
Gibbs Posteriors. JMLR.

provides minimal assumptions on W ensuring

ES

{
Eθ∼ρW [R(θ)]

}
≤ R(θ∗) + c

(
d(P , π) log(n)

n

)β

where β = 1 under Bernstein condition, β = 1/2 otherwise.
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Recap

ρ(θ) ∝ π(θ)e−α
∑n

i=1 ℓ(xi ,θ).

We have :

ES

{
Eθ∼ρ[R(θ)]

}
≤ R(θ∗) + c

(
d log(n)

n

)β

where β = 1 under Bernstein condition, β = 1/2 otherwise.

The generalization error is driven by d = d(P , π) that
depends on π.
Tempting to learn a better π, but π is not allowed to
depend on the data...
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Idea of Bayesian meta-learning :

We solve many related tasks (say T ) using Bayesian
learning.
By related, we mean that the same prior could be used in
all tasks.
Based on past tasks, can we define a π that would work
better for future tasks ?

Pierre Alquier, ESSEC Bayesian meta-learning
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Notations :
Tasks : t = 1, . . . ,T .
P1, . . . ,PT are i.i.d from P .
Task t : St = (xt,1, . . . , xt,n) i.i.d from Pt .
Generalization error in task t : Rt(θ) = Ex∼Pt [ℓ(x , θ)].
Best error in task t : Rt(θ

∗
t ) = minθ Rt(θ).

ρt(π, α)(θ) ∝ π(θ) exp[−α
∑n

i=1 ℓ(θ, xt,i)].

Objective
Learn π̂ = π̂(S1, . . . ,ST ).
For a new task PT+1 ∼ P , ST+1 = (xT+1,1, . . . , xT+1,n)
i.i.d. from PT+1, we want :

Eθ∼ρT+1(π̂,α) [RT+1(θ)] ≤ Eθ∼ρT+1(π,α) [RT+1(θ)] .

Pierre Alquier, ESSEC Bayesian meta-learning
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Past tasks, used to learn a better prior. Expectation with
respect to P1, . . . ,PT ,S1, . . . ,ST denoted by Edata.
New task. Expectation with respect to PT+1 and ST+1

will be denoted by Enew.
Pierre Alquier, ESSEC Bayesian meta-learning
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Ultimate (non-achievable) performance :

E∗ = Enew[RT+1(θ
∗
T+1)] = EPT+1∼P [RT+1(θ

∗
T+1)].

With a fixed prior :

E(π) = Enew

{
Eθ∼ρT+1(π,α)[RT+1(θ)]

}
≤ E∗ + c EPT+1∼P

[(
d(PT+1, π) log(n)

n

)β
]
.

To give an overview of our results, let us consider first an easy
situation : we want to find the best of K priors, say

π1, . . . , πK .
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Recall :

ρt(π, α) = argmin
p

{
Eθ∼p

[
1
n

n∑
i=1

ℓ(xt,i , θ)

]
+

KL(p, π)

αn︸ ︷︷ ︸
R̂t(p,π)

}
.

In this case, our procedure boils down to :

π̂ = argmin
π∈{π1,...,πK}

{
1
T

T∑
t=1

R̂t

[
ρt(π, α), π

]}
.

Pierre Alquier, ESSEC Bayesian meta-learning
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Theorem

Edata[E(π̂)]

≤ min
k=1,...,K

E(πk) +
logK

T

≤ E∗ + c min
k=1,...,K

EPT+1∼P

[(
d(PT+1, πk) log(n)

n

)β
]
+ c

logK

T
.

Important observations :
gain expected only if T ≫ n.
the rate for learning the prior is in 1/T regardless or the
rate within tasks (β = 1 or β = 1/2).
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More generally, we can learn the best prior in an infinite
set Q (for example, all Gaussian priors, etc).
The definition of π̂ gets a little more convoluted.
We will recover similar results

Edata[E(π̂)] ≤ min
π∈Q

E(π) + C(Q)

T

where C(Q) is a complexity measure of Q.

Pierre Alquier, ESSEC Bayesian meta-learning
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Example 1 : Gaussian priors.
θ ∈ Rp.
Q = {N (µ,Σ), µ ∈ Rp,Σ ∈ Sp

+}.
fix some m and put V = Enew

[
∥θ∗T+1 −m∥2

]
.

Very approximatevely,

Edata[E(π̂)] ≤ E∗ + c
p

T
+ c

p

n
log (1 + nV ) .

If V ≤ 1
T

, Edata[E(π̂)] ≤ E∗ + c
p

T
.
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Example 2 : mixture of Gaussian priors.
θ ∈ Rp.
Q =

{∑K
k=1 pkN (µk ,Σk)

}
.

fix m1, . . . ,mK and put V = Enew
[
mink ∥θ∗T+1 −mk∥2

]
.

Edata[E(π̂)] ≤ E∗ + c
pK

T
+ c

logK

n
+ c

p

n
log (1 + nV ) .

Pierre Alquier, ESSEC Bayesian meta-learning



Introduction : Bayesian learning and meta-learning
Overview of our results

More detailed view of our results

1 Introduction : Bayesian learning and meta-learning

2 Overview of our results

3 More detailed view of our results

Pierre Alquier, ESSEC Bayesian meta-learning



Introduction : Bayesian learning and meta-learning
Overview of our results

More detailed view of our results

The general procedure π̂ = π̂(S1, . . . ,ST ) is a little more
convoluted, it is actually a Bayesian procedure :

fix a prior Π on the set of priors Q : Π ∈ Prob(Q),
define :

Λ̂ = argmin
Λ∈Prob(Q)

{
Eπ∼Λ

[
1
T

T∑
t=1

R̂t

(
ρt(π, α), π

)]
+

KL(Λ,Π)

γT

}
,

draw π̂ ∼ Λ̂.

Pierre Alquier, ESSEC Bayesian meta-learning
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Define

π∗ = argmin
π

Enew

[
R̂T+1

(
ρT+1(π, α), π

)]
.

Lemma – Bernstein condition at the meta-level
For any π ∈ Q,

Enew

[(
R̂T+1

(
ρT+1(π, α), π

)
− R̂T+1

(
ρT+1(π

∗, α), π∗
))2

]
≤ C Enew

[
R̂T+1

(
ρT+1(π, α), π

)
− R̂T+1

(
ρT+1(π

∗, α), π∗
)]

.

Pierre Alquier, ESSEC Bayesian meta-learning
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Theorem

Edata

{
Eπ̂∼Λ̂[E(π̂)]

}
≤ E∗

+ min
Λ∈Prob(Q)

Eπ∼Λ

{
EPT+1∼P

[(
d(PT+1, π) log(n)

n

)β
]

+
K(Λ,Π)

γT

}
.

The aforementioned examples are obtained by specification of
Π, and taking an explicit Λ above.
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Remark :

Λ̂ = argmin
Λ∈Prob(Q)

{
Eπ∼Λ

[
1
T

T∑
t=1

R̂t

(
ρt(π, α), π

)]
+

KL(Λ,Π)

γT

}
.

What happens if we minimize over a smaller set
V ⊂ Prob(Q) ?

Λ̂V = argmin
Λ∈V

{
Eπ∼Λ

[
1
T

T∑
t=1

R̂t

(
ρt(π, α), π

)]
+

KL(Λ,Π)

γT

}
.

Note : can be seen as a variational Bayes version of Λ̂.
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Theorem

Edata

{
Eπ̂∼Λ̂V

[E(π̂)]
}
≤ E∗

+min
Λ∈V

Eπ∼Λ

{
EPT+1∼P

[(
d(PT+1, π) log(n)

n

)β
]

+
K(Λ,Π)

γT

}
.

For example, in the case Q = {π1, . . . , πK}, taking V as the
set of Dirac masses allows to define π̂ by a minimization rather
than by randomisation.
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Note however that our result require to use “exact” Bayes
within tasks.

Lemma – Bernstein condition at the meta-level
For any π ∈ Q,

Enew

[(
R̂T+1

(
ρT+1(π, α), π

)
− R̂T+1

(
ρT+1(π

∗, α), π∗
))2

]
≤ C Enew

[
R̂T+1

(
ρT+1(π, α), π

)
− R̂T+1

(
ρT+1(π

∗, α), π∗
)]

.

We don’t know how to extend this lemma if we replace
ρT+1(π, α) by a variational approximation.

Pierre Alquier, ESSEC Bayesian meta-learning



Introduction : Bayesian learning and meta-learning
Overview of our results

More detailed view of our results

Some important open questions :
extending the Lemma to allow variational approximations.
lower bounds.
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