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Introduction : Bayesian learning and meta-learning
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Introduction : Bayesian learning and meta-learning

To keep the results as simple as possible :
o §=(X,...,X,)iid. from P,
@ /(x,0) bounded by 1.

@ Generalization risk : R(0) = Ex.p[¢(X,0)].
@ Objective : 6* = arg minycg R(6).
@ Risk of the “Bayes” procedure p : Ey,[R(f)].

Theorem (stated informally)

Es{Es RO))} < RE) + LB

where d = d(P, ) defined in the next slide, for a well chosen.
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Introduction : Bayesian learning and meta-learning

R(0)

N(6*,s) == {0 € © : R(§) — R(6*) < s}. )

d = d(P, ) is the smallest number such that, for any s small
enough :

* d
m(N(0*,s)) > s°.
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Introduction : Bayesian learning and meta-learning

How do we prove the theorem ?

p(0) o m(6)e i ti0)

= argmin < Eyp
pEProb(O©)

PAC-Bayes / Information bounds

]ES{IE(;NP[R(Q)]} < inf {EQNP[R(H)] Yot %} .

In particular, for p as the restriction of = to N(6*,s),

]ES{EHNP[R(Q)]} < ;r>n; {R(@*) +s+a+ dlog . } :

an
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Introduction : Bayesian learning and meta-learning

@ Old result : in a “noiseless setting”, when there is a # such
that ¢(x,0) = 0 almost surely for x ~ P,

ES{EGN,)[R(Q)]} < R(o") +c 108",
= 4

@ Similar fast rates obtained in classification under
Mammen and Tsybakov margin assumption (1999).

@ Also with Lipschitz and strongly convex losses ¢(x, ) by
Bartlett and Mendelson (2006).

All these assumptions turned out to be a special case of :

Bernstein condition

E,.» {[E(X, 0) — 0(x, 9*)]2} < C[R(6) — R(6Y)].
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Introduction : Bayesian learning and meta-learning

What about variational Bayes?

Let W be a subset of Prob(©), and put :

KL
n (p, )

an

l n
w .
p"(#) = argmin Eg —g l(x;, 0

( ) pE Probt&@ W Pln 1 ( )

@ P. Alquier, J. Ridgway , N. Chopin (2016). On the Properties of Variational Approximations of
Gibbs Posteriors. JMLR.

provides minimal assumptions on W ensuring

d(P,T) Iog(n)>6

n

s {Bo- RO} < RO+ ¢

where 8 = 1 under Bernstein condition, 5 = 1/2 otherwise.

4
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Introduction : Bayesian learning and meta-learning
Recap

p(0) o m(6)e* iz {xi0),

We have :
ES{E0~p[R(9)]} < R(O")+c (‘”"Tg(”))ﬁ

where 8 = 1 under Bernstein condition, 5 = 1/2 otherwise.

v

@ The generalization error is driven by d = d(P, ) that
depends on 7.

@ Tempting to learn a better 7, but 7 is not allowed to
depend on the data...
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Introduction : Bayesian learning and meta-learning

Idea of Bayesian meta-learning :

((,0) ((,0) ((x,0)
(6)

g

S=(x1,...,25)

Tn S=(z1,...,xp)
SN \
-

p(0) p(0) p(0)
o ()e= Sizi Lwir0) x ()e= Sz (xi0)

s
m

p(0)
o 1(0)e= Siz i) o 1(0)e= Siz i)

@ We solve many related tasks (say T) using Bayesian
learning.

@ By related, we mean that the same prior could be used in
all tasks.

@ Based on past tasks, can we define a 7 that would work
better for future tasks?
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Introduction : Bayesian learning and meta-learning

Notations :
o Tasks: t=1,...,T.
@ Py,...,Prareiid from P.
o Task t : & = (X¢1, ..., Xe,pn) i.i.d from Py.
@ Generalization error in task t : R:(0) = E,p,[¢(x,0)].
@ Best error in task t : R.(0}) = ming R:(0).
@ pi(m,a)(0) o< w(0) exp[—a > i, U0, x¢,i)]-
Objective

o Learn # = #(Sy,...,ST).

@ For a new task Pri1 ~ P, Sti1 = (X741.1,- - s XT41.n)
i.i.d. from Pr.1, we want :

Eompria(ro) [RT+1(0)] < Eonpros(ma) [RT11(0)] -




Introduction : Bayesian learning and meta-learning

//\\

P
Pr T+1

l l 1 |
S So St ST41

= (T1,1,---,%1,n) = ($T+1,17---737T+1,n)
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Introduction : Bayesian learning and meta-learning

Pri

l l l |
Sy So St ST11

= (ml,la"'wrl,n) = (IT+1,17"'7xT+1,n)

@ Past tasks, used to learn a better prior. Expectation with
respect to Py, ..., Pr,S1, ..., St denoted by Eqata.

@ New task. Expectation with respect to Pry; and S11
will be denoted by [E, ..
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Overview of our results

Ultimate (non-achievable) performance :

g* - IIE’new[l:\)T—i—l( >I';'_5_1)] - EPT+1~P[RT+1(0§'+1)]‘

With a fixed prior :

E(n) = Enew{E9~p7+1(ﬂ,a)[RT+1(0)]}
d(Pr1,7) |og(n))5] |

n

< EF+ CEPT+1~P [(

To give an overview of our results, let us consider first an easy
situation : we want to find the best of K priors, say

T1yeoo, TK.
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Overview of our results

Recall :
. 1< KL(p,
pe(m, @) = argpmm Eop - ;g(xt’,,g) + %
ﬁtzg,ﬂ')

In this case, our procedure boils down to :

-
R . 1 5
7= argmin ?;Rt [pt(w,a),w]

w€{T1,..., Tk }
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Overview of our results

Edatal€(7)]

: log K
<
=0 Em+ 7

1,.., n T

d(Pr+1,7%) |Og(”)>B] PR E

.

Important observations :
@ gain expected only if T > n.

@ the rate for learning the prior is in 1/ T regardless or the
rate within tasks (5 =1 or g = 1/2).
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Overview of our results

@ More generally, we can learn the best prior in an infinite
set Q (for example, all Gaussian priors, etc).

@ The definition of & gets a little more convoluted.

@ We will recover similar results

. . c(Q)
Egata[E(T)] < 7rrnelgé'(ﬁ) +—

where C(Q) is a complexity measure of Q.
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Overview of our results

Example 1 : Gaussian priors.
@ HeRP.
e Q={N(u,X),neRP. T €S}
o fix some m and put V = E,. [[|0%,, — m|]?].

Very approximatevely,

Edata[g(ﬁ-)] < E + C% + C% IOg (1 -+ nV) .

1 N ]
If vV S ?1 Edata[g(’]r)] S & + C%'
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Overview of our results

Example 2 : mixture of Gaussian priors.

° 0 € RP.
o 0= {I, PN, W) }.
o fix my,...,mg and put V = B, [ming [|0%,, — mi]]?].

K  logK
EoalE(7)] < € + c”T P

+cP log (1+ nV).
n
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More detailed view of our results

The general procedure # = 7(Sy, ..., S7) is a little more
convoluted, it is actually a Bayesian procedure :
@ fix a prior I on the set of priors Q : 1 € Prob(Q),
o define :

T
1 A
7;7?4(%%(”,04)77() ’YT

A= argmin < E_ A
AeProb(Q)

| KL n)} |

o draw 7 ~ A.
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More detailed view of our results

Define

7 = argminE [ﬁprl (pT+1(7r,oz),7r)] .

7'('

Lemma — Bernstein condition at the meta-level

For any m € Q,

- [(ﬁnl (,OT+1(7T>04)a7T) ~Rra (p”l(ﬂ*’a)’ﬂ*»j

< CEpew [QT—H (,OT+1(7T704),7T> —Rri (pr+1(7f*704),77*)} :

v
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More detailed view of our results

(Theorem
Eauta{ Ep A€M} < &
+ min ET(N/\{EPT_H[N'P [(C/(PT+1,7T) Iog(n)>5]

NeProb(Q) n
KA T
PRSGAD) }

T

V.

The aforementioned examples are obtained by specification of
I, and taking an explicit A above.
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More detailed view of our results

Remark :

KL(A, 1)
)

ZRt(pt T, Q) >

What happens if we minimize over a smaller set

VY C Prob(Q)?

A= argmin < K. A
NeProb(Q)

ZRt<pt T, Q) )

Note : can be seen as a variational Bayes version of A.

KL(A, )

Ay =argmin E, A
A€V
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More detailed view of our results

(Theorem |
Egua{Epop, @]} < &

" minEM{EP . [(‘“an) 'Og(n))ﬁ]
AeV T

IC(A, )

V.

For example, in the case Q = {my,..., 7k}, taking V as the
set of Dirac masses allows to define 7 by a minimization rather
than by randomisation.
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More detailed view of our results

Note however that our result require to use “exact” Bayes
within tasks.

Lemma — Bernstein condition at the meta-level
For any m € Q,

Epey [(ﬁnl (PT+1(7T704)a7T) ~Rra (pT“(W*’O‘)’W*))z]

< CEpew [ﬁTH (PT+1(7T,04),7T) —Rri (pr+1(7f*,a),7T*)} -

V.

We don't know how to extend this lemma if we replace
p1+1(m, ) by a variational approximation.
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More detailed view of our results

Some important open questions :
o extending the Lemma to allow variational approximations.

@ lower bounds.
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