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Notations

Regression/classification problem :
@ objects x € X,
@ labels y € Y C R,
@ predictors f, 1 X = YV, w € RY, abjective : neural networks.

Difficulties of “continual learning”

o d |S huge, — we need a lot of data.

o the dataset iS huge, — impossible to store all the data.
@ we will learn w sequentially based on a data stream

(Xt7 _yt)1 — the x; come from a real life data collection process that makes them

non-indentically distributed..
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Online learning theory

Online learning theory provides algorithms to learn from data
streams, with theoretical guarantees.

Online Gradient Algorithm

o w; =0,

@ Wiy = Wy — UtVW:wf(}/t; fw(Xt))-

Regret bound for OGA

If £ is L-Lipschitz + convex, one can calibrate 7; such that

ET: T

1 1 .
_ 1 < 2

T — g(yt’ th(Xt)) ||V|I/T|]£B T ;g(yﬁ fW(Xt)) < BL\/;
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Example : training a self-driving car

Decide an itinerary
o from RIKEN AIP (Tokyo)

@ to Tabayama.
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Observation

Ye = fw*(Xt) J

ey=1...,1:

o x; i.i.d from P; — we learn wy.
ey=mn+1....m:

o x; i.i.d from P, — we update wy to ws.
o y=71+1,.. .., 7ki1:

e x; i.i.d from Px — we update wk to wk 1.
@ x~ P;:

o fu...(x) is a much worse prediction than f,, (x).
o we forgot how to deal with objects x ~ Py.
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What is the problem with online learning theory ?

L 1 2
— inf — f, < BlLy/—=.
g Voo fu(x)) = inf T;E(yt, w(x)) < BLy/ =

o tells you f,,(x;) predicts well y, (on average over t), not
that £, (x;) predicts well y;.

. . _ t .

e online-to-batch bounds : averaging w; = $>___; w; is
proven to work well for out-of-sample prediction... in the
i.i.d case!
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Linear model — notations

@ initialization : w,, = 0.
@ task 7, given as a block :

Y+l X1
Y, = : and X;, = :
Yri X7:,k—+1
@ update :

Wr, = argmin{”Yn - XTkW||2 + >‘||W - WTk—1||2}

weRd
= W.rk_1 -+ (XZ;XT,( ar A')_X;C( \(YT;( - XTk WTk—l)J‘
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Definition of forgetting

Definition - forgetting of task / at the end of task j
For s <t we put

= “XTSWTr - XTSWTS||2‘

e X, = U.X. VT be the SVD of X,

Tt VTt

e O™ = VIV, the overlap matrix,
o M, =% (X, +Al)"UL

For any t > s,

2

t
s— v,
> U, 0" M, Y,
k=s+1
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Upper bound on forgetting

t
\% S ||Z’Ts||op Z ||OT5_>Tt||op

k=s+1

M., Y.,

With V., = (V. [1]|V~[2]|...) we have
OF ™ = cos(Vo[i], V- [i])

and [|O™ 7| = cos(a) where « is the Dixmier angle
between the span of V., and the span of V..

@ Dixmier, J. (1949). Etude sur les variétés et les opérateurs de Julia, avec quelques applications.
Bulletin de la SMF.
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A recent improvement

@ Evron, |., Moroshko, E., Ward, R., Srebro, N. & Soudry, D. (2022). How catastrophic can
catastrophic forgetting be in linear regression ? COLT '22.

@ simplified setting, allows an refinement of the analysis,

@ note : | find their results very elegant, so | presented the
previous result using some of their notations.

In their paper :
@ A\ =0, there is w* such that Y, = X, .w* (no noise).
o the X, are normalized = |||, < 1.
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Consequences of the simplifications

Define the orthogonal projection P, = I — X, (X] X.,)~X]

Tk

then w,, —w* =P, (w,_, — w")

=P, ... Pﬁ(iv:?/—w*)7
=0

and = X wy, — Xrw,, |2

= [ Xrwr, = Yo, 2

= ||XTsWTr - XTSW*||2

= |Xe.Pr .. Pow|?

< |1 = Pr)Pr, . Prw?|%
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Average forgetting : worst case

Definition - average forgetting at task t

2

1 t
= Z X Wi, — X Wi,

s=1

1< .
== Z IX:.Ps, ... Pryw*||?
s=1

few

They design a situation where :

1 "“
>1-0(2).
\/E Figure from Evron et al. (2022).
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Situations where forgetting do not occur

Evron et al. (2022) then argue that in general, forgetting is
not that bad :

o cyclic tasks : 7¢,...,71,71,...,7T,... After seeing t
tasks,

Vit t
@ randomized tasks : 7y, 7, ... where the [; are i.i.d
uniform in {1,..., T}, then after seeing t tasks,

B (1] < 9 (d -+ Zstzl rank(st)> |

< min (T2 T2(d - max{ranuxﬁ)}) |

— however, this requires to store the tasks, or, at least, to be able to learn them many times...
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Conclusion of the theoretical analysis

What we learnt so far
@ catastrophic forgetting can happen even in linear models,
@ depends on the geometry and order of the tasks.

Open questions :
@ noisy case,
@ nonlinear case,
@ tasks not by block // not aware that a new task begins,
@ other algorithms... (we propose a few in the next section),
@ theoretical limitations :

@ Knoblauch, J., Hisham, H. & Diethe, T. (2020). Optimal continual learning has perfect memory
and is NP-hard. ICML’'2020.
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Orthogonal updates

@ Doan, T., Bennani, M. A. & Sugiyama, M. (2020). Generalisation guarantees for continual
learning with orthogonal gradient descent. ICML’2020 Workshop on Lifelong Learning.
W, = arg min Y. =X w2+ M|w—w 2
Tk g Tk Tk : Tk—1
w € RY

T
VTI(W7 Wre_4) =0

. .
Vm, (w—wr_,)=0

1

= wy, , + (XX, + A0 X] (Yo, = Xpwy, )

where I, is the orthogonal projection on ker(V]|...|V] ).

=0. |

But the procedure requires to store V., V,,, ...
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Data compression (1/2)

In general, X, = U, %, VI.
~— O = Y
Nexd Nex Nt Nex Nt Nexd
Data compression : replace V., by V., (d x n, n < N,) :
@ “OGD" : X,, : n rows sampled from X,,, X, = U, %, V.

@ Farajtabar, M., Azizan, N., Mott, A. & Li, A. (2020). Orthogonal gradient descent for continual
learning. AISTATS’2020.

@ instead of random rows, “memorable observations” :

@ Pan, P. , Swaroop, S. , Immer, A., Eschenhagen, R., Turner, R. & Khan, M. E. (2020). Continual
Deep Learning by Functional Regularisation of Memorable Past. NeurlPS'2020.

Different framework, but the philosophy would here lead
to select high-leverage observations.
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Data compression (2/2)

Data compression : replace V., by V., (nx d, n < N,) :
@ our proposal, “PCA-OGD" : PCA on X,,, that is

(VAR Vi
Tt * °

o [1; := orthogonal projection on ker(VI|...|VT ).

Tt—1
Ars—1t — \J T[]
o Onom = VIV,

v S ||ZTS MTk?Tk

t
ATSHTt
w 2 |0

k=s+1

op
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Simulation

H(A)TS—WHOID for “OGD" and “PCA-OGD" in two settings.
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Experiments : impact of ||[O™77]||,,

PCA-OGD
0GD

Drop in accuracy

Max eigenvalue of 01~ 15

Figure 2: Drop in performance with respect to the
maximum eigenvalue for Rotated MNIST (averaged
over 5 seeds £1 std).
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Experiments : evaluation of || l|op

PCA-OGD - 0GD =~  GEM-NT —— SGD

_«— Lower Forgetting
Eigenvalue magnitude

Eigenvalue index
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Experiments : performances

mmm 0GD(25 == OGD(50)) === OGD(100) m=m OGD (200)
m= PCA(25) mm PCA(50) PCA(100)  m=s PCA (200)
3 | I
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Figure 4: Final accuracy on Rotated MNIST for
different memory size (averaged over 5 seeds £1 std).
OGD needs twice as much memory as PCA-OGD in
order to achieve the same performance (i.e compare

OGD (200) and PCA (100).
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