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Introduction : algorithms for Bayesian inference

Notations
Assume that we observe X, ..., X, i.i.d from Py, in a model
{Ps,0 € ©} dominated by Q : ?1_’:;? = py. Prior m on ©.
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Introduction : algorithms for Bayesian inference

Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Ps,0 € ©} dominated by Q : (fi—':g = py. Prior m on ©.

The likelihood

i=1
The posterior

7a(d0) o Lo(6)7(d6).
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Introduction : algorithms for Bayesian inference

Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Py,0 € ©} dominated by Q : C(li—'zg = py. Prior 7 on ©.

The likelihood
La(0) = [ po(X)

i=1

7a(d0) o Lo(6)7(d6).

The tempered posterior - 0 < a < 1

Tna(dl) o< [Ly(0)]“7(d0).

A\
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Introduction : algorithms for Bayesian inference

Various reasons to use a tempered posterior

@ more robust to model misspecification (at least
empirically)

@ P. Griinwald. The Safe Bayesian : Learning the Learning Rate via the Mixability Gap ALT 2012. J
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Introduction : algorithms for Bayesian inference

Various reasons to use a tempered posterior

@ more robust to model misspecification (at least
empirically)

@ P. Griinwald. The Safe Bayesian : Learning the Learning Rate via the Mixability Gap ALT 2012. J

@ theoretical analysis easier

@ A. Bhattacharya, D. Pati & Y. Yang. Bayesian fractional posteriors. The Annals of Statistics, ’
2019.
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Introduction : algorithms for Bayesian inference

Computation of the posterior

@ explicit form (conjugate models),

Pierre Alquier Approximate Bayesian Inference



Introduction : algorithms for Bayesian inference

Computation of the posterior

@ explicit form (conjugate models),
o MCMC algorithms.

Pierre Alquier Approximate Bayesian Inference



Introduction : algorithms for Bayesian inference

Computation of the posterior

@ explicit form (conjugate models),
o MCMC algorithms. Example : Metropolis-Hastings.

Metropolis-Hastings Algorithm (MH)

@ arbitraty 6,

@ given 6,
Q draw t,1 ~ q(+6n),
© 0.1 — tn+1 with probability a(6,, th+1)
17 9, otherwise.

_ [ mna(t)q(f]t)
a(f,t) = min {m, 1} :
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Introduction : algorithms for Bayesian inference

But...

@ when the dimension is large, the convergence of MCMC
can be extremely slow,
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Introduction : algorithms for Bayesian inference

But...

@ when the dimension is large, the convergence of MCMC
can be extremely slow,

@ when the model is complex, each evaluation of 7, (6)
can be expensive,

@ also, when the sample size is large, each evaluation of
Tna(f) can be expensive even in simple models.

For these reasons, in the past 20 years, many methods
targeting an approximation of 7, , became popular : ABC, EP
algorithm, variational inference, approximate MCMC ...
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Introduction : algorithms for Bayesian inference

Outline of the talk

@ Introduction : algorithms for Bayesian inference

© Noisy MCMC
@ Noisy MCMC : definition, and motivating example
e Convergence study of noisy MCMC
@ Subsampling in MCMC

e Variational approximations
@ Variational approximations : definition
@ Consistency of variational approximations
@ Applications

Pierre Alquier Approximate Bayesian Inference



Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Outline of the talk

© Noisy MCMC
@ Noisy MCMC : definition, and motivating example
e Convergence study of noisy MCMC
@ Subsampling in MCMC
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Co-authors on this project

Nial Friel Florian Maire

> 4

Aidan Boland Richard Everitt
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Noisy Metropolis-Hastings

Metropolis-Hastings Algorithm

@ arbitraty 6,

@ given 6,,

Q draw t, 1 ~ q(-|0n),
Q 0.1 — tn+1 with probability a(6,, th11)
17 9, otherwise,
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Noisy Metropolis-Hastings

Metropolis-Hastings Algorithm

@ arbitraty 6,

@ given 6,,

Q draw t, 1 ~ q(-|0n),
Q 0.1 — tn+1 with probability 4(6,, t,11, S,)
17 9, otherwise,

where 4(0,t,S) is a numerical approximation of

. 71'n,cv(t)q(mt)
a(0. £) = min {W 11

that can be based (or not!) on some simulated r.v. S.
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

A motivating example

Example : Exponential Random Graph Model (ERGM)

Given a set of nodes {1,...,n}, and x a graph on these nodes
represented by the adjacency matrix x;; = 1 < “/ and j are
connected”, and s(x) be a vector of statistics. We define :

e e )
PlX) = o @Ts()) 26
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

A motivating example

Example : Exponential Random Graph Model (ERGM)

Given a set of nodes {1,...,n}, and x a graph on these nodes
represented by the adjacency matrix x;; = 1 < “/ and j are
connected”, and s(x) be a vector of statistics. We define :

~exp(07s(x))  exp(07s(x))
PN =S5 en@Ts() ~ Z0)

Then

2(0.1) — min | T[0T SCNZO] " 9(0]1)
’ 7(0) [exp(07s(x))Z ()] q(£]6)

Pierre Alquier Approximate Bayesian Inference
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Approximation of a(-,-) in ERGM

7(2) [exp(¢7s(x)) Z(0)

a(f,t) = min

R
Q
—~~
=
~
~—

7(6) [exp(97s(x))Z(2)

and we cannot compute Z.
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Approximation of a(-,-) in ERGM

(1) [exp(t7s())Z(9)]° a(6]2)
]

20, 1) = min [rrw) [exp(07s() Z(0) a(216)

and we cannot compute Z. However,

exp(675(x)) | _ § exp(07 s(x)) exp(ts(x)) _ Z(6)
e (o) 2oop(eTs() 20 20

“q(t]0)
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Approximation of a(-,-) in ERGM

(1) [exp(t7s())Z(9)]° a(6]2)
]

20, 1) = min [rrw) [exp(67s())Z(0] a(2l6) |

and we cannot compute Z. However,

Eyer, (M) _ 3 2el0Ts() enltTs() _ Z(9)

“q(t]0)

exp(t7s(x)) exp(t’s(x))  Z(t)  Z(t)
so we can draw Sy = (xg,...,xy) iid from P; (feasible) and
3(9, t, SN)

7(0) exp(afTs(x))q(t exp(t7s(x;))

_ min [ FD (et Ts())a(6) (1§~ exp(67s(x)) |
| o0 0 e )
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Theoretical study of noisy MCMC

Note that noisy MCMC produces a Markov chain, but there is
no reason for 7, to be invariant for this chain.
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Theoretical study of noisy MCMC

Note that noisy MCMC produces a Markov chain, but there is
no reason for 7, , to be invariant for this chain. However :

Theorem

Assume :
o Esl|a(f,t) —a(0,t,5)] <4(0,t).

@ The kernel P associated with a(6, t) is uniformly ergodic :
VGO; ”590'DM - 7Tn,a||TV S CpM

Then ||, PY — 65, PM [l < 2K(C, p) sup / 4(dt|0)5(6, t)
0

where P is the kernel of noisy MCMC, K(C, p) is known.



Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC

Noisy MCMC for ERGM

Corollary for ERGM

Assume that

@ the parameter space is bounded : sup, g ||0]| = T < oo,
@ there is a ¢ > 0 such that ¢ < w(0), q(0|t) < 1/c.
C(T,c,s)

@ P. Alquier, N. Friel, R. G. Everitt & A. Boland. Noisy Monte-Carlo : Convergence of Markov
Chains with Approximate Transition Kernels. Statistics and Computing, 2016.

Then :  ||0g,P™ — 89, PM|| oy <
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC

Noisy MCMC for ERGM

Corollary for ERGM

Assume that

@ the parameter space is bounded : sup, g ||0]| = T < oo,
@ there is a ¢ > 0 such that ¢ < w(0), q(0|t) < 1/c.
C(T,c,s)

@ P. Alquier, N. Friel, R. G. Everitt & A. Boland. Noisy Monte-Carlo : Convergence of Markov
Chains with Approximate Transition Kernels. Statistics and Computing, 2016.

Then :  ||0g,P™ — 89, PM|| oy <

v

Important generalization to the geometrically ergodic P, using
the Wasserstein distance rather than total variation :

Bernoulli, 2018.

Pierre Alquier Approximate Bayesian Inference

@ D. Rudolf & N. Schweizer. Perturbation theory for Markov chains via Wasserstein distance. J



Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Simulations : Florentine Family Business Dataset
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Simulations : Florentine Family Business Dataset

s(x) = (s1(x), 2(x))
@ s1(x) number of edges,

@ sy(x) number of 2-stars.
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Numerical Results

Edge 2-star
Method Mean SD Mean SD
BERGM -2.675 0.647 0.188 0.155
Exchange -2573 0.568 0.146 0.133

Noisy Exchange | -2.686 0.526 0.167 0.122
Noisy Langevin -2.281 0.513 0.081 0.119
MALA Exchange | -2.518 0.62 0.136 0.128
Noisy MALA -2.584 0.498 0.144 0.113

Table — Posterior means and standard deviations.
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Chains, density and ACF plot for the edge statistic.
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Chains, density and ACF plot for the 2-star stat.
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Noisy MCMC Convergence stu

ition,
of noisy MCMC

Subsampling in MCMC

Subsampling in MCMC

|dea to approximate 4 when the sample size n is too large :

evaluate 4 on a subsample of the data.
time M-H

mre HENEE
e HNEEE
omee - HREEE
comns | I8 6] L Y

noisy MCMC

EEEER
/2131715
/2131415
HEEIER
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Noisy MCMC : definition, and motivating example
Noisy MCMC Convergence study of noisy MCMC
Subsampling in MCMC

Subsampling in MCMC

|dea to approximate 4 when the sample size n is too large :
evaluate 4 on a subsample of the data.

time M-H noisy MCMC

e ANNEE EREEA
erre ERENE EEEE
ome - ENEEE EEEER
60 mins

@ F. Maire, N. Friel, P. Alquier, Informed Sub-Sampling MCMC : Approximate Bayesian Inference
for Large Datasets. Statistics and Computing, 2019.

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
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Variational approximations Applications

Outline of the talk

e Variational approximations
@ Variational approximations : definition
@ Consistency of variational approximations
@ Applications
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Variational approximations : defi
Consistency of variational approx
Variational approximations Applications

Co-authors on this project

James Ridgway Nicolas Chopin
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Co-authors on this project

James Ridgway Nicolas Chopin

|dea of VB : chose a family F of probability distributions on ©
and approximate 7, by a distribution in F :
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Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Co-authors on this project

James Ridgway Nicolas Chopin

|dea of VB : chose a family F of probability distributions on ©
and approximate 7, by a distribution in F :

Tna i=argmin K(p, mpa).
pEF

Pierre Alquier Approximate Bayesian Inference




Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Variational approximations

Tna = argmin K(p, Tpo)
pEF

. 1<
= argmin 4 —a / E;IOgPQ(Xi)p(dQ)"i_K(pa )

—ELBO(p)

Examples :

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Variational approximations

Tna = arg ml]r_] ]C(pv 7T-n,C't)

—argmm{—a/ Z|nge )p(de) + K(p, )}

J/

_ELBO(p)

Examples :
@ parametric approximation

F={N(pX):peR)LeS}.
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Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Variational approximations

Tna = arg ml]r_] ]C(pv 7T-n,C't)

= arg m|n { / Z log po(Xi)p(dB) + K(p, )} :

N J/

_ELBO(p)

Examples :
@ parametric approximation

F={N(pX):peR)LeS}.

@ mean-field approximation, © = ©; x ©, and
F :{p: p(df) = pr(db1) x p2(do2)}.



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Tools for the consistency of VB

The a-Rényi divergence for a € (0, 1)

L log / (dP)*(dR).

D.(P,R) =

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Tools for the consistency of VB

The a-Rényi divergence for a € (0, 1)

L log / (dP)*(dR).

D.(P,R) =

All the properties derived in :

@ T. Van Erven & P. Harremos. Rényi divergence and Kullback-Leibler divergence. IEEE

Transactions on Information Theory, 2014.

Among others, for 1/2 < «, link with Hellinger and Kullback :

HZ(P7 R) < Da(PJ R) 7 IC(Pv R)

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

What do we know about 7, 7

B(r)y={0 € ©:K(Py,, Ps) <r}.

Theorem, variant of (Bhattacharya, Pati & Yang

For any sequence (r,) such that
—log w[B(r,)] < nr,

we have

1+«

I

—

Q

E {/ Do(Py, Pgy)mna(df)| <

@ A. Bhattacharya, D. Pati & Y. Yang. Bayesian fractional posteriors. The Annals of Statistics,
2019.
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Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Extension of previous result to VB

Theorem (A. & Ridgway)
If there is p, € F and (r,) such that

f’C(PQm Pa)ﬂn(de) S I'n,
and
K(pn, ) < nry,

then, for any o € (0,1),

.

1
E U Do(Py, Pay)na(d)| < 1J_FZ

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Extension of previous result to VB

Theorem (A. & Ridgway)
If there is p, € F and (r,) such that
f’C(PGm Po)pn(df) < rn,

and
K(pn, ) < nry,

then, for any o € (0,1),

5 1+«
E DQ(PQ,PQO)W,LQ(dQ) S rp.
11—«
@ P. Alquier & J. Ridgway. Concentration of tempered posteriors and of their variational
approximations. The Annals of Statistics, to appear.
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Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Misspecified case

Assume now that Xi, ..., X, i.i.d ~ Q & {Py,0 € ©}. Put :
0" = arg min K(Q, Py).

Theorem (A. and Ridgway)
Assume that there is p, € F such that

/E [Iog (;F;fe] pn(df) < r, and K(pn, 7) < nry,

then, for any « € (0,1),

1+«
11—«

E [/ Da(Pg,Q)frw(dQ)] < %K(Q,Pg*)—i—

I

v
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Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 1 : Gaussian VB

@ Let © = RP.
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Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 1 : Gaussian VB

@ Let © =RP.
@ We start with the family of approximations

Fg ={®(d¥;mx), meRY ¥ egcCS{R)},
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Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 1 : Gaussian VB

@ Let © =RP.
@ We start with the family of approximations

Fg ={®(d¥;mx), meRY ¥ egcCS{R)},

@ We assume that for a model {py, 0 € ©} there exists a
measurable real valued function M(+) such that

[log py(X1) — log py (X1)| < M(X1) [|6 — 6|

Furthermore we assume that
]EM(Xl) = Bl, EM2(X1) =: B, < 0.

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Application of the result

Let the family of approximation be F with F%,, C F as
defined above. We put

B, B d
r,,:—l\/—22vC—|ogn
n o n n

Then for any o € (0, 1),

.

1
" {/ Da('D97P9o)7?n,a(d9|X1n) < 4

T 11—«

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Stochastic Variational Bayes

@ To implement the idea we write
Fg ={o(do; m,CC*), (m,C)e BNRI x S7}.

F:x=(m,C)eRxR™ — E[f(x,&)] = K(pm,c,mn)
where & ~ N(0, I,)

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations

Variational approximations Applications

Stochastic Variational Bayes

@ To implement the idea we write
Fg = {o(d6;m,CC*), (m, C)eBNRYx 87}
F:x= (m; C) c ]Rd X ]RdXd — E [f(Xvé-)] = IC(prhC?ﬂ-")
where & ~ N(0, I,)

@ The optimization problem can be written

min  E[f(x,§)],

x€BNRI xSI
where

A cc
F((m, €).€) = log pmce( YY) + log — = (m + CE)

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition

Consistency of variational approximations
Variational approximations Applications

We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input : xo, X{', v7
For ie{l,---,T},
a. Sample & ~ N(0, Iy)
b. Update
X¢ <= Pg (X1 — 77V F(xe-1, &)
End For .

Output : X7 = + 23:1 Xe

where Vf is the gradient of the integrand in the objective
function

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations

Variational approximations Applications

@ Assume that f is convex in its first component x and that
it has L-Lipschitz gradients.

@ Define 7% ,(dA|X") to be the k-th iterate of the algorithm

For some C,

B B d[1 y 1 160> d
n=—V—=Vi— |5l — = —
! nvnzv{nLOg(ﬁnC)ijﬁm * ny?  2n
with vy, = %, we get

1+a 1 2BL
~ k n < '
B | [ 0u(n PaYiEa(abx)] < 12+ 22

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 2 : nonparametric regression

Nonparametric regression

o Y, =f(X)+&,

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 2 : nonparametric regression

Nonparametric regression

o Y, = f(Xi)+¢&,
° ¢ NN(0702)v

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 2 : nonparametric regression

Nonparametric regression

o Y, = f(Xi)+¢&,
° ¢ NN(0702)v

@ f is s-smooth with s unknown,

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 2 : nonparametric regression

Nonparametric regression

o Y:i="1f(X)+¢&,
° gi ~ N(0702)v
@ f is s-smooth with s unknown,

@ prior : () = Zszl Bi¢;(), random K and 3;'s, (¢))
basis...

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 2 : nonparametric regression

Nonparametric regression

o Y:i="1f(X)+¢&,
° gi ~ N(0702)v
@ f is s-smooth with s unknown,

@ prior : () = ZJK:l Bi®;(+), random K and f;'s, (;)

basis...

@ variational approx : ; mutually independent...

2s

Under suitable assumptions, r, ~ ('Ogrsn)) =

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 3 : matrix completion

In

@ P. Alquier, J. Ridgway , N. Chopin. On the Properties of Variational Approximations of Gibbs
Posteriors. JMLR, 2016.

we proved that the variational approximations used in the
matrix completion problem do not change the rate of
convergence.

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 4 : model selection

Assume that we have K models, define 7%  a variational
approximation of the tempered posterior in model k, and rk its
convergence rate if model k is correct. Put :

~

k = arg max ELBO(75 ,)-

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 4 : model selection

Assume that we have K models, define 7%  a variational
approximation of the tempered posterior in model k, and rk its
convergence rate if model k is correct. Put :

~

k = arg max ELBO(75 ,)-

If the true model is actually ko,

0 l+a log(K)
E{/D (0. PP)REo(d01X])| < e + B

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 4 : model selection

If the true model is actually ko,

| [ D.(Po PPYRE(a00)| <

This result is actually due
to my PhD student Badr-
Eddine Chérief-Abdellatif.

ELBO maximization for model

@ B.-E. Chérief-Abdellatif. Consistency of
selection. AAB/ 2018.

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
Consistency of variational approximations
Variational approximations Applications

Example 5 : mixture models

VB for mixtures

K
@ Poo=>._1Piqs,

Pierre Alquier Approximate Bayesian Inference



Variational approximations : definition
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Variational approximations Applications

Example 5 : mixture models

® Poo=3r pidgs,
@ VB approximation : the 6;'s are mutually independent and
independent from (py, ..., pk).

Pierre Alquier Approximate Bayesian Inference
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Example 5 : mixture models

® Poo=3r pidgs,
@ VB approximation : the 6;'s are mutually independent and
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Example 5 : mixture models

® Poo=3r pidgs,
@ VB approximation : the 6;'s are mutually independent and
independent from (py, ..., pk).

Under suitable assumptions, r, ~ K'°Tg(").

@ B.-E. Chérief-Abdellatif, P. Alquier. Consistency of Variational Bayes Inference for Estimation and

Model Selection in Mixtures. Electronic Journal of Statistics, 2018.
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What's next ?

[L(0)]” 7(d) = L(8)r(dB)

@ F. Zhang & C. Gao (2017). Convergence Rates of Variational Posterior Distributions. Preprint
arxiv :1712.02519.
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What's next ?

[L(0)]” 7(d) = L(8)r(dB)

@ F. Zhang & C. Gao (2017). Convergence Rates of Variational Posterior Distributions. Preprint
arxiv :1712.02519.

@ we only proved pointwise convergence. What would be
conditions ensuring that credible intervals given by the
variational approximation are correct ?

@ many recent papers study approximations based on other
divergences or distances than I : Rényi, Wasserstein, ...

@ analysis of online variational inference (work in progress
with Emti Khan and Badr-Eddine Chérief-Abdellatif)...
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Thank you'!
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