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Generalisation error in machine learning

@ Risk :
R(0) := E(x,v)~p [5<Y, fe(X)ﬂ-

o Data & = ((X4, Y1),...,(X,, Y,)) i.i.d. from P. Empirical

risk :
Rul) = - > (Ve 000,

@ Randomized estimator : 0, sampled from a
data-dependent probability distribution /) = j(S).
@ Generalization gap :

A

gen(0,8) = R(0) — R,(0).

Pierre Alquier, ESSEC Business School MIB for Statistical Inference



Classical visualization
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Source : wikipedia (“bias-variance tradeoff’ page).
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Mutual information : definition

Kiillback-Leibler divergence
dv

KL(v| 1) = Ego, {Iog @(9)}

and KL(v||p) = oo is v has no density g—; wW.rt. ...

KL(v||x) > 0 and KL(v||n) =0 < v = p. J

Let (U, V) ~ Q. Let Qu and Qy denote their marginals. If U
and V were independent, Q@ = Qu ® Qv .

Mutual information between two random variables

Z(U, V) = KL(Q||Qu ® Qv).
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Mutual information bound

Mutual information bound (Catoni, 2007 ; Russo & Zou, 2019)

Assumption : 0 < ¢(Y, fp(X)) < 1, then

Z(d,S)

EsE; gen(6), 8)‘ < o
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In this talk, MIB will not be used in its usual meaning. It will
stand for “Mutual Information Bound'.
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Toy example

Finite set of predictors {0y, ...,0y}, then Z(0,S) < log(M).
The MIB gives :

EsE;R(0) < EsE;R,(A) +

If we take /) as a point mass on the empirical risk minimizer
(ERM) 0= eERM- Then

R : log(M)
ESR(GERM) S ES 1gI§nM R,,(QJ) + on
: log(M)
<
< 1rsnj%nMIESR,,(HJ) + P
o log(M)
R R(0;) + 2n
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Corollary : PAC-Bayes bounds

Define a new probability measure Es[/] by
Vevent E, Es[/](E) = Es[p(E)].
Classical property of the mutual information :

(0, 8) = EsKL(p||Es[/]) = inf EsKL(p||).

Fix a “prior distribution” 7, then the MIB implies the following

Corollary - PAC-Bayes bound (in expectation)

5 A EsKL(p
EsEsR(0) < EsEy_;Ra(0) + #
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MIB and PAC-Bayes bounds

Z(6, S) < EsKL(p||)

TN

MIB : PAC-Bayes :

7(0.5) EsKL(j]r)

2n 2n

NS

Catoni : optimize w.r.t. 7

Catoni, O. (2007). PAC-Bayesian supervised classification : the thermodynamics of statistical
learning. IMS Monograph series.

Russo, D. and Zou, J. (2019). How much does your data exploration overfit ? controlling bias via

information usage. IEEE Transactions on Information Theory.

Alquier, P. (2024). User-friendly introduction to PAC-Bayes bounds. Foundations and Trends(®)
in Machine Learning.

L K e

Hellstrém, F., Durisi, G., Guedj, B. and Raginsky, M. (2025). Generalization bounds : Perspectives
from information theory and PAC-Bayes. Foundations and Trends(® in Machine Learning.

v
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Statistical inference framework

We now observe a sample S = (Xi,..., X,) of n variables i.i.d
from P.

We are given a “model”, that is a set (Py, 0 € ©) of probability
distributions, and the promise that P = Py, for some 6, € ©.

Our objective is to estimate #y from S.

Assuming that the P,'s have densities py,a classical estimation
methods is the maximum likelihood estimator (MLE) :

0 =argmax | | po(X;).
a2
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Remarks on the MLE

QMLE = arg maxH po(X
0c© i1

= ar max—H’ 1'09( )
e H, 1 Poo(X0)
(X

po, (X)
= arg min — log ——
0€© Zl po(Xi)

The MLE can be seen a special case of ERM with the risk

ZI l::(x 255 KL(Py, || Ps) =: R(6).

Better notation : “log-likelihood ratio”

LR,(6o,0) : ZI ”""
i=1
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What kind of bound can we hope for?

By analogy with the MIB stated earlier, we could conjecture,
for a parameter 0 ~ /(S) :

. (0,8
2o, (KUPGIP) — LR,(00.7)) | < | 02
However, the loss function log ‘:fe"((;;")) is not bounded in

general, and thus we cannot apply Russo & Zou's MIB here.

It appears that this conjecture is wrong, so you are going to
forget | ever mentioned it !
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Statistical divergences

The a-Rényi divergence for a € (0, 1)

~ o [ [QUIR@]

Da(QIIR) =

o —

The Hellinger distance

H(Q,R) = \/ > | (Vi) - V@)

These are strongly related. For example, for 1/2 < o :

H*(Q. R) < Du(QIIR) o KLRIQ).

@ T. Van Erven & P. Harremos (2014). Rényi divergence and Kullback-Leibler divergence. IEEE
Transactions on Information Theory.
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MIBfor statistical inference

Theorem — MIB for statistics
Fix a € (0,1), then

a A z HA,S
EsE; (Da(P§||P90) 1 aLR,,(%,G)) < ﬁ.

In particular, for « = 1/2, we obtain :

27(0,S)
a—

EsE; (Hz(pé, Pa,) — LRy(60, é)) <
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Remarks on the MIB for statistics

A 2Z(0,S
EsE; (Hz(p(;, Py,) — LR"(90,9)> < % J

@ Note the “fast rate” in 1/n instead of 1,/n.

@ On the other hand, our risk H?(Ps, Ps,) < KL(Pg,||Ps) :
this is weaker than what we were hoping for.
@ Under suitable differentiability assumptions on log py(x),

H2(Po, Pay) = 50— 00)J(00)(0 — 60) + 0 (160~ 6ol
KL(Ps1Pa) = 2(6 — 00) T J(60)(0 — )  + o (19 — o]

where J(-) is the Fisher information,

J(00) = Exp, [(fe jog pﬁ(X))z .
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Consequences of the MIB

Reminder — for MIB statistics

Q A z HA,S
EslEy (Da(PéHPeo) — 1= aLRn(9079)> = ﬁ'

Until the end of the talk, let us investigate some consequences
of this result :

© PAC-Bayes bounds, which motivate “tempered posterior
distributions”,

@ rates of convergence of tempered posteriors,
© rates of convergence of variational approximations,
Q@ rates for the MLE.
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Corollary : PAC-Bayes bounds

Corollary — PAC-Bayes bound for statistics

Fix @« € (0,1) and a prior T,

Es [Ej.; | LRo(60, 0)] + K120

EsEyDa (P3| Ps,) <

l-«a
V.
This result was proven in :
B Alquier, P. and Ridgway, J. (2020). Concentration of tempered posteriors and of their variational
approximations. The Annals of Statistics.
based on techniques from :
@ Bhattacharya, A., Pati, D. and Yang, Y. (2019). Bayesian fractional posteriors. The Annals of
Statistics. )
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Key lemma for the minimization of the bound

Donsker and Varadhan variational inequality

Let 7 be a probability distribution. Let h(-) such that
[ exp(—h(9))m(dd) < oo. Define

 elh®)
)= T ryran

Then

TR = arg min [/ h(8)p(dd) + KL(p||m)| .

p
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Minimization of the PAC-Bayes bound

Es [By.; [ LRy (60, 6)] + K120 J

EsE;Da(P; || Pao) < = o

The right-hand side is minimized by

p(dO) = 7ok, (d6)
x exp (—anLR,(6p,0)) m(d0)

— (H pg(X,-))aﬂ'(dQ)

Terminology from Bayesian statistics
The posterior distribution : (T]7_; po(X;)) 7(d8).

Tempered posterior : ([]7_; po(X))" w(d6).
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A complete example : Gaussian mean estimation

(4] Xl, R ,X,, ii.d. /\/(00, Id)
o m=N(0,0%ly).
© Da(Pol|Po,) = 5110 —bo||* and KL(Py, || Ps) = 510 — o>

AR _ Z?:le é
o _N(”miz’nuiz'd

EsE;

()Nﬂ-nu LRp

Es [E [aLR (00,9)] M} J

Da(Pi1Pun) < —

o EsE; |aLRy(06,0)] = O (4).

o KL term :
d n 2 1
. 1 z 1 Sl Xi n+ —=
KL = |—a® gy - || &=t dlog — a0
(llm) = 3 [n+ 1 o2 It 1 + dlog 1 ]
A d log(n)
2
ESE(}"WMLRH 00— <O <T ) J
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A complete example : Gaussian mean estimation

More generally, when the parameter is d-dimensional, we
obtain rates in O(2 log(n)) as in :

@ Alquier, P. and Ridgway, J. (2020). Concentration of tempered posteriors and of their variational
approximations. The Annals of Statistics.

@ Bhattacharya, A., Pati, D. and Yang, Y. (2019). Bayesian fractional posteriors. The Annals of
Statistics.

Solution : use the MIB bound!

a . 700,8)
EsEy r..ix, <Da(Pé||Peo) - ELR,,(QO,Q)) < nl—a)

7(0,8) = igrfEsKL(WmLRn m) < EsKL(Tr01r,() | TnsDa(p.11Poy))

EsE 10 — 6o|? <

O~The LRy

2
1d+ 1ol
a(l —a)?n
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Rates of convergence general case

leaE

There is a constant ¢, such that :

Vo € O, KL(PQOHPO) < CaDa(P9HP90)'

;”gﬁEew [KL(Pao| P)] =: d < +o0.
>

Corollary of the MIB for tempered posteriors

Under Assumptions 1 and 2,

EsE

2¢c,, 2d
o KLPIIP) < o (5 2
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Variational approximations

In general, the tempered posterior is intractable.
Define :
KL
Dyaria. = argmin {aEequRn(Qo, 9) + M}
qeF n

where F is a specified set of “tractable” probability measures.

KL(p||7, ,
sup inf 3 {]EGN,J [KL(Pg, || Ps)] + M} —: d’ < +o0.

B>0 PEF
4

Corollary of the MIB
Under Assumptions 1 and 2,

2¢, \2d
ESEUNﬂvar/a L(PQOHP@)SO(( _a) 5

1 n
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Study of the MLE

VU a2V e Und it
. . . asr;u:p?ciccazn;zag,ythere is a
=. .... finite e-cover of © with
" ' cardinality N (0, ¢).
.._. '® &

. . o Let 07, .. be the MLE on this

finite set.
Es (Da(Pé

log N (©, ¢)

||P90) - n(l —_ Oé) :

Q Ae
1_aLRn(907631LE)> <

MLE

Under regularity assumptions (Lipschitz...) on D, and on the
log-likelihood,

log V(©,¢)

ESD@(PﬁMLE“P‘%) < C(Oé)E + n(l - Od) .
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Thank you!
PNhrE) TIWFEL T

Pierre Alquier, ESSEC Business School MIB for Statistical Inference



