
A Regret Bound for Online
Variational Inference
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Online gradient algorithm (OGA)

Given

a set of predictors {fθ, θ ∈ Θ ⊂ Rd}, e.g fθ(x) = 〈θ, x〉,
an initial guess θ1,

ŷt = fθt(xt) and θt+1 = θt − η∇θ `(fθt(xt), yt)︸ ︷︷ ︸
=`t(θ)

.

Note that θt+1 can be obtained by:

min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
,

min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η

}
.

Bayesian learning and variational inference (VI)

πt+1(θ) := π(θ|x1, y1, . . . , xt, yt) ∝ exp

(
−η

t∑
s=1

`s(θ)

)
π(θ).

Not tractable in general, leading to variational approximations:

π̃t+1(θ) = arg min
q∈F

KL(q, πt+1)

= arg min
q∈F

{
Eθ∼q

[
t∑

s=1

`s(θ)

]
+

KL(q, π)

η

}
.

Formula for the online update of πt+1:

πt+1(θ) ∝ exp (−η`t(θ))πt(θ).

Q1: can we similarty define a sequential update for a variational
approximation?

Regret bounds for Bayesian inference

Theorem: Under the assumption that the loss is bounded by B, the
Bayesian update leads to

T∑
t=1

Eθ∼πt[`t(θ)] ≤ inf
q


T∑

t=1

Eθ∼q[`t(θ)] +
ηB2T

8
+

KL(q, π)

η

 .
Derivation of the infimum and η ∼

√
T “usually” leads to

T∑
t=1

Eθ∼πt[`t(θ)] ≤ inf
θ

T∑
t=1

`t(θ) +O(
√

dT log(T )).

Q2: can we derive similar results for online VI?

Two options for online VI

Parametric VI: F = {qµ, µ ∈ M}.

Sequential Variational Approximation (SVA):

µt+1 = arg min
µ

{〈
µ,

t∑
s=1

∇µEθ∼qµs
[`s(θ)]

〉
+

KL(qµ, π)

η

}
.

Streaming Variational Bayes (SVB):

µt+1 = arg min
µ

{〈
µ,∇µEθ∼qµt

[`t(θ)]
〉

+
KL(qµ, qµt)

η

}
.

SVA & SVB are tractable, and not equivalent

Example: Gaussian prior θ ∼ π = N (0, s2I ) and mean-field Gaussian
approximation, µ = (m, σ).

SVA: mt+1 ← mt − ηs2ḡmt, gt+1 ← gt + ḡσt,

σt+1 ← h (ηsgt+1) s,
SVB: mt+1 ← mt − ησ2

t ḡmt,

σt+1 ← σth (ησtḡσt)

where h(x) :=
√

1 + x2 − x is applied componentwise, as well as the
multiplication of two vectors, and

ḡmt =
∂

∂m
Eθ∼πmt ,σt

[`t(θ)] and ḡσt =
∂

∂σ
Eθ∼πmt ,σt

[`t(θ)].

Theoretical analysis of SVA

Theorem: Under convexity and L-Lipschitz assumption on the loss, under
α-strong convexity assumption on the KL term, SVA leads to

T∑
t=1

Eθ∼qµt
[`t(θ)] ≤ inf

µ∈M


T∑

t=1

Eθ∼qµ[`t(θ)] +
ηL2T
α

+
KL(qµ, π)

η

 .
Application to Gaussian approximation leads to

T∑
t=1

Eθ∼qµt
[`t(θ)] ≤ inf

θ

T∑
t=1

`t(θ) + (1 + o(1))
2L
α

√
dT log(T ).

Theoretical analysis of SVB

Theorem: Using Gaussian approximations, assuming the loss is convex,
L-Lipschitz and the parameter space bounded (diameter = D), SVB with
adequate η leads to

T∑
t=1

`t

(
Eθ∼qµt

(θ)
)
≤ inf

θ

T∑
t=1

`t(θ) + DL
√

2T .

If, moreover, the loss is H-strongly convex,
T∑

t=1

`t

(
Eθ∼qµt

(θ)
)
≤ inf

θ

T∑
t=1

`t(θ) +
L2(1 + log(T ))

H
.

Test on a simulated dataset

Figure: Average cumulative losses on different datasets for classification and regression
tasks with OGA (yellow), OGA-EL (red), SVA (blue), SVB (purple) and NGVI (green) for
the convex hinge loss and the squared loss functions. The black line shows the average
total cumulative loss in hindsight. We see that in most cases NGVI outperforms the other
algorithms. The last plot (California Housing dataset) shows the consistency of our
algorithms for a nonconvex loss L̄t.

Open questions

Analysis of SVB in the general case.

Analysis of the uncertainty quantification.

NGVI is the next step in going closer to algorithms used to train Neural Net-
works with Bayesian principles. But being based on a different parametriza-
tion, it does not satisfy our convexity assumption...
Uses exponential family approximations {qµ, µ ∈ M} where m is the mean
parameter. Denoting λ the natural parameter (with λ = F (µ)),

λt+1 = (1− ρ)λt + ρ∇µEθ∼qµt
[`t(θ)] ,

M. E. Khan, D. Nielsen (2018). Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models. ISITA.
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