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Motivation

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurIPS.

1 proposes a fast algorithm
to approximate the
posterior,

2 applies it to train Deep
Neural Networks on
CIFAR-10, ImageNet ...

3 observation : improved
uncertainty quantification.

Picture : Roman Bachmann.

Objective : provide a theoretical analysis of this algorithm.
First step : simplified versions.
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The sequential prediction problem

Sequential prediction problem

1 1 x1 given
2 predict y1 : ŷ1
3 y1 is revealed

2 1 x2 given
2 predict y2 : ŷ2
3 y2 revealed

3 1 x3 given
2 predict y3 : ŷ3
3 y3 revealed

4 . . .

Objective : make sure that
we learn to predict well as
soon as possible. Keep

T∑
t=1

`(ŷt , yt)

as small as possible.
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`(ŷt , yt)

as small as possible.

Pierre Alquier, RIKEN AIP Regret bounds for online variational inference



The sequential prediction problem

Sequential prediction problem
1 1 x1 given

2 predict y1 : ŷ1
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`(ŷt , yt)

as small as possible.

Pierre Alquier, RIKEN AIP Regret bounds for online variational inference



The sequential prediction problem

Sequential prediction problem
1 1 x1 given

2 predict y1 : ŷ1
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Online gradient algorithm (OGA)

Given
a set of predictors {fθ, θ ∈ Θ ⊂ Rd}, e.g fθ(x) = 〈θ, x〉,
an initial guess θ1,

ŷt = fθt (xt) and θt+1 = θt − η∇θ`(fθt (xt), yt).

Note that θt+1 can be obtained by :

1 min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
,

2 min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η

}
.
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Bayesian learning and variational inference (VI)

πt+1(θ) := π(θ|x1, y1, . . . , xt , yt) ∝ exp

(
−η

t∑
s=1

`s(θ)

)
π(θ).

Not tractable in general, leading to variational approximations :

π̃t+1(θ) = arg min
q∈F

KL(q, πt+1)

= arg min
q∈F

{
Eθ∼q

[
t∑

s=1

`s(θ)

]
+

KL(q, π)

η

}
.

Formula for the online update of πt+1 :

πt+1(θ) ∝ exp (−η`t(θ))πt(θ).

Q1 : can we similarly define a sequential update for a
variational approximation ?
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Regret bounds for Bayesian inference

Theorem (classical result)

Under the assumption that the loss is bounded by B , the
Bayesian update leads to

T∑
t=1

Eθ∼πt [`t(θ)]

≤ inf
q

{
T∑
t=1

Eθ∼q[`t(θ)] +
ηB2T

8
+

KL(q, π)

η

}
.

Derivation of the infimum and η ∼
√
T “usually” leads to

T∑
t=1

Eθ∼πt [`t(θ)] ≤ inf
θ

T∑
t=1

`t(θ) +O(
√
dT log(T )).

Q2 : can we derive similar results for online VI ?
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Two options for online VI
Parametric VI : F = {qµ, µ ∈ M}.

1 Sequential Variational Approximation (SVA) :

θt+1 = arg min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,

t∑
s=1

∇µEθ∼qµs [`s(θ)]

〉
+

KL(qµ, π)

η

}
.

2 Streaming Variational Bayes (SVB) :

θt+1 = arg min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,∇µEθ∼qµt [`t(θ)]

〉
+

KL(qµ, qµt )

η

}
.

Pierre Alquier, RIKEN AIP Regret bounds for online variational inference



Two options for online VI
Parametric VI : F = {qµ, µ ∈ M}.

1 Sequential Variational Approximation (SVA) :

θt+1 = arg min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,

t∑
s=1

∇µEθ∼qµs [`s(θ)]

〉
+

KL(qµ, π)

η

}
.

2 Streaming Variational Bayes (SVB) :

θt+1 = arg min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,∇µEθ∼qµt [`t(θ)]

〉
+

KL(qµ, qµt )

η

}
.

Pierre Alquier, RIKEN AIP Regret bounds for online variational inference



Two options for online VI
Parametric VI : F = {qµ, µ ∈ M}.

1 Sequential Variational Approximation (SVA) :

θt+1 = arg min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,

t∑
s=1

∇µEθ∼qµs [`s(θ)]

〉
+

KL(qµ, π)

η

}
.

2 Streaming Variational Bayes (SVB) :

θt+1 = arg min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,∇µEθ∼qµt [`t(θ)]

〉
+

KL(qµ, qµt )

η

}
.

Pierre Alquier, RIKEN AIP Regret bounds for online variational inference



Two options for online VI
Parametric VI : F = {qµ, µ ∈ M}.

1 Sequential Variational Approximation (SVA) :

θt+1 = arg min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,

t∑
s=1

∇µEθ∼qµs [`s(θ)]

〉
+

KL(qµ, π)

η

}
.

2 Streaming Variational Bayes (SVB) :

θt+1 = arg min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,∇µEθ∼qµt [`t(θ)]

〉
+

KL(qµ, qµt )

η

}
.

Pierre Alquier, RIKEN AIP Regret bounds for online variational inference



SVA & SVB are tractable, and not equivalent
Example : Gaussian prior θ ∼ π = N (0, s2I ) and mean-field
Gaussian approximation, µ = (m, σ).

SVA : mt+1 ← mt − ηs2ḡmt , gt+1 ← gt + ḡσt ,

σt+1 ← h (ηsgt+1) s,

SVB : mt+1 ← mt − ησ2t ḡmt ,

σt+1 ← σth (ησt ḡσt )

where h(x) :=
√
1 + x2 − x is applied componentwise, as well

as the multiplication of two vectors, and

ḡmt =
∂

∂m
Eθ∼πmt ,σt

[`t(θ)],

ḡσt =
∂

∂σ
Eθ∼πmt ,σt

[`t(θ)].
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Theoretical analysis of SVA

Theorem 1
Under convexity and L-Lipschitz assumption on the loss, under
α-strong convexity assumption on the KL term, SVA leads to

T∑
t=1

Eθ∼qµt [`t(θ)]

≤ inf
µ∈M

{
T∑
t=1

Eθ∼qµ[`t(θ)] +
ηL2T

α
+

KL(qµ, π)

η

}
.

Application to Gaussian approximation leads to

T∑
t=1

Eθ∼qµt [`t(θ)] ≤ inf
θ

T∑
t=1

`t(θ) + (1 + o(1))
2L
α

√
dT log(T ).
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Theoretical analysis of SVB

Theorem 2
Using Gaussian approximations, assuming the loss is convex,
L-Lipschitz and the parameter space bounded (diameter = D),
SVB with adequate η leads to

T∑
t=1

`t

(
Eθ∼qµt (θ)

)
≤ inf

θ

T∑
t=1

`t(θ) + DL
√
2T .

If, moreover, the loss is H-strongly convex,

T∑
t=1

`t

(
Eθ∼qµt (θ)

)
≤ inf

θ

T∑
t=1

`t(θ) +
L2(1 + log(T ))

H
.
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Test on a simulated dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Breast dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Open questions

1 Analysis of SVB in the general case.
2 Analysis of the uncertainty quantification.
3 NGVI is the next step in going closer to algorithms used

to train Neural Networks with Bayesian principles. But
being based on a different parametrization, it does not
satisfy our convexity assumption...

Uses exponential family approximations {qµ, µ ∈ M}
where m is the mean parameter. Denoting λ the natural
parameter (with λ = F (µ)),

λt+1 = (1− ρ)λt + ρ∇µEθ∼qµt [`t(θ)] ,

M. E. Khan, D. Nielsen (2018). Fast yet Simple Natural-Gradient Descent for Variational
Inference in Complex Models. ISITA.
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2 Analysis of the uncertainty quantification.
3 NGVI is the next step in going closer to algorithms used

to train Neural Networks with Bayesian principles. But
being based on a different parametrization, it does not
satisfy our convexity assumption...

Uses exponential family approximations {qµ, µ ∈ M}
where m is the mean parameter. Denoting λ the natural
parameter (with λ = F (µ)),

λt+1 = (1− ρ)λt + ρ∇µEθ∼qµt [`t(θ)] ,

M. E. Khan, D. Nielsen (2018). Fast yet Simple Natural-Gradient Descent for Variational
Inference in Complex Models. ISITA.
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Thank you !
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