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The Maximum Likelihood Estimator (MLE)
Let X1, . . . ,Xn be i.i.d in X from a probability distribution P0.

Statistical inference :
propose a model (Pθ, θ ∈ Θ), assume P0 = Pθ0 .
compute θ̂n = θ̂n(X1, . . . ,Xn).

Letting pθ denote the density of Pθ, then

θ̂MLE
n = argmax

θ∈Θ
Ln(θ), where Ln(θ) =

n∏
i=1

pθ(Xi).

Example : P(m,σ) = N (m, σ2) then

m̂ =
1
n

n∑
i=1

Xi and σ̂2 =
1
n

n∑
i=1

(Xi − m̂)2.
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MLE not unique / not consistent

Example :

pθ(x) =
exp(−|x − θ|)
2
√
π|x − θ|

,

Ln(θ) =
exp (−

∑n
i=1 |Xi − θ|)

(2
√
π)n
∏n

i=1

√
|Xi − θ|

.
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MLE fails in the presence of outliers
What is an outlier ?
Huber proposed the contamination model : with probability ε,
Xi is not drawn from Pθ0 but from Q that can be anything :

P0 = (1 − ε)Pθ0 + εQ.

Example : Pθ = Unif [0, θ], then

Ln(θ) =
1
θn

n∏
i=1

1{0≤Xi≤θ} ⇒ θ̂ = max
1≤i≤n

Xi .

In the case of the following contamination, the MLE is
extremely far from the truth :

P0 = (1 − ε).Unif [0, 1] + ε.N (1010, 1)...
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Minimum Distance Estimation

Empirical distribution : P̂n :=
1
n

n∑
i=1

δXi
.

Minimum Distance Estimation (MDE)

Let d(·, ·) be a metric on probability distributions.

θ̂d := argmin
θ∈Θ

d
(
Pθ, P̂n

)
.

Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics.

Idea : MDE with an adequate d leads to robust estimation.

Bickel, P. J. (1976). Another look at robustness : a review of reviews and some new
developments. Scandinavian Journal of Statistics. Discussion by Sture Holm.

Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estimation. JASA.

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov’s
entropy. Annals of Statistics.
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Integral Probability Semimetrics

Integral Probability Semimetrics (IPS)

Let F be a set of real-valued, measurable functions and put

dF(P ,Q) = sup
f ∈F

∣∣∣∣∣EX∼P [f (X )]− EX∼Q [f (X )]

∣∣∣∣∣.
Müller, A. (1997). Integral probability metrics and their generating classes of functions. Applied
Probability.

assumptions required in order to ensure that
dF(P ,Q) = 0 ⇒ P = Q (that is, dF is a metric).
assumptions required in order to ensure that dF < +∞.
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Non-asymptotic bound for MDE
Theorem 1

X1, . . . ,Xn i.i.d from P0,
for any f ∈ F , supx∈X |f (x)| ≤ 1.

Then
E
[
dF(Pθ̂dF

,P0)
]
≤ inf

θ∈Θ
dF(Pθ,P0) + 4.Radn(F).

Rademacher complexity

Radn(F) := sup
P

EY1,...,Yn∼P Eϵ1,...,ϵn

[
sup
f ∈F

1
n

n∑
i=1

ϵi f (Yi)

]
.

where ϵ1, . . . , ϵn are i.i.d Rademacher variables :
P(ϵ1 = 1) = P(ϵ1 = −1) = 1/2.
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Example 1 : set of indicators

1A(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Image from Wikipedia.

Reminder - Vapnik-Chervonenkis dimension
Assume that F = {1A,A ∈ A} for some A ⊆ P(X ),

SF(x1, . . . , xn) := {(f (x1), . . . , f (xn)), f ∈ F},
VC(F) := max {n : ∃x1, . . . , xn, |SF(x1, . . . , xn)| = 2n} .

Theorem (Bartlett and Mendelson)

Radn(F) ≤
√

2.VC(F) log(n + 1)
n

.

Bartlett, P. L. & Mendelson, S. (2002). Rademacher and Gaussian complexities : Risk bounds and
structural results. JMLR.
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Example 1 : KS and TV distances

Two classical examples :
A = {all measurable sets in X}, then dF(·, ·) is the total
variation distance TV(·, ·).

VC(F) = +∞ when |X | = +∞,
in general, Radn(F) ↛ 0.

X = R, A = {(−∞, x ] , x ∈ R}, then dF(·, ·) is the
Kolmogorov-Smirnov distance KS(·, ·).

KS distance was actually proposed by S. Holm for robust
estimation,
VC(F) = 1, so :

E
[
KS(Pθ̂KS

,P0)
]
≤ inf

θ∈Θ
KS(Pθ,P0) + 4.

√
2 log(n + 1)

n
.
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Example 2 : Maximum Mean Discrepancy (MMD)

RKHS (H, ⟨·, ·⟩H) with kernel k(x , y) = ⟨ϕ(x), ϕ(y)⟩H.

If ∥ϕ(x)∥H = k(x , x) ≤ 1 then EX∼µ[ϕ(X )] is well-defined .

The map µ 7→ EX∼µ[ϕ(X )] is one-to-one if k is characteristic.

Gaussian kernel k(x , y) = exp(−∥x − y∥2/γ2) satisfies these
assumption.

F = {f ∈ H : ∥f ∥H ≤ 1}.

Dk(P ,Q) := dF(P ,Q) = sup
f ∈F

∣∣∣EX∼P [f (X )]− EX∼Q [f (X )]
∣∣∣

=
∥∥∥EX∼P [ϕ(X )]− EX∼Q [ϕ(X )]

∥∥∥
H
.
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Example 2 : MMD

Theorem (Bartlett and Mendelson)

F = {f ∈ H : ∥f ∥H ≤ 1} ⇒ Radn(F) ≤
√

supx k(x , x)

n
.

Corollary

E
[
Dk(Pθ̂Dk

,P0)
]
≤ inf

θ∈Θ
Dk(Pθ,P0) + 4

√
supx k(x , x)

n
.
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Example 2 : MMD

We actually have

D2
k(Pθ, P̂n) = EX ,X ′∼Pθ

[k(X ,X ′)]− 2
n

n∑
i=1

EX∼Pθ
[k(Xi ,X )]

+
1
n2

∑
1≤i ,j≤n

k(Xi ,Xj)
and so

∇θD2
k(Pθ, P̂n)

= 2EX ,X ′∼Pθ

{[
k(X ,X ′)− 1

n

n∑
i=1

k(Xi ,X )

]
∇θ[log pθ(X )]

}

that can be approximated by sampling from Pθ.
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Example 3 : Wasserstein
Another classical metric belongs to the IPS family :

Wδ(P ,Q) = sup
f : X → R
Lip(f ) ≤ 1

∣∣∣∣∣EX∼P [f (X )]− EX∼Q [f (X )]

∣∣∣∣∣
where Lip(f ) := supx ̸=y |f (x)− f (y)|/δ(x , y).

Bound on the Rademacher complexity when X is bounded :

Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G.R. (2010).
Non-parametric estimation of integral probability metrics. IEEE International Symposium on
Information Theory.

Minimum Wasserstein estimation studied in :

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). On parameter estimation with the
Wasserstein distance. Information and Inference : A Journal of the IMA.
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MDE and robustness

Reminder

E
[
dF(Pθ̂dF

,P0)
]
≤ inf

θ∈Θ
dF(Pθ,P0) + 4.Radn(F).

Huber’s contamination model : P0 = (1 − ε)Pθ0 + εQ.

dF (Pθ0 ,P0) = sup
f∈F

∣∣EX∼Pθ0
f (X )− (1 − ε)EX∼Pθ0

f (X )− εEX∼Q f (X )
∣∣

= sup
f∈F

∣∣εEX∼Pθ0
f (X )− εEX∼Q f (X )

∣∣
= ε.dF (Pθ0 ,Q) ≤ 2ε if for any f ∈ F , sup

x
|f (x)| ≤ 1

Corollary - in Huber’s contamination model

E
[
dF(Pθ̂dF

,Pθ0)
]
≤ 4ε+ 4.Radn(F).
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MDE and robustness : toy experiment

Model : N (θ, 1), X1, . . . ,Xn i.i.d N (θ0, 1), n = 100 and we
repeat the exp. 200 times. Kernel k(x , y) = exp(−|x − y |).

θ̂MLE θ̂MMDk
θ̂KS

mean abs. error 0.081 0.094 0.088

Now, ε = 2% of the observations drawn from a Cauchy.

mean abs. error 0.276 0.095 0.088

Now, ε = 1% are replaced by 1, 000.

mean abs. error 10.008 0.088 0.082
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Improving the constant

From now, we assume that supx k(x , x) ≤ 1. We know :

E
[
Dk(Pθ̂Dk

,P0)
]
≤ inf

θ∈Θ
Dk(Pθ,P0) +

4√
n
.

We will now prove a better result without using the
Rademacher complexity :

Theorem

E
[
Dk(Pθ̂Dk

,P0)
]
≤ inf

θ∈Θ
Dk(Pθ,P0) +

2√
n
.
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Proof of the theorem : preliminary lemma

Lemma
For any P0, when X1, . . . ,Xn are i.i.d from P0,

E
[
Dk

(
P̂n,P

0
)]

≤ 1√
n
.

{
E
[
Dk

(
P̂n,P

0
)]}2

≤ E
[
D2

k

(
P̂n,P

0
)]

= E
[∥∥∥(1/n)∑(µ(δXi

)− µ(P0))
∥∥∥2

H

]
= (1/n)E

[
∥µ(δX1)− µ(P0)∥2

H

]
≤ 1/n.
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Proof of the theorem

∀θ, Dk

(
Pθ̂,P

0) ≤ Dk

(
Pθ̂, P̂n

)
+ Dk

(
P̂n,P

0
)

≤ Dk

(
Pθ, P̂n

)
+ Dk

(
P̂n,P

0
)

≤ Dk

(
Pθ,P

0)+ 2Dk

(
P̂n,P

0
)

E [Dk (Pθ̂,P0)] ≤ inf
θ∈Θ

Dk(Pθ,P0) +
2√
n
.
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A bound in probability

Thanks to McDiarmid’s inequality :

Theorem
For any P0, when X1, . . . ,Xn are i.i.d from P0, with probability
at least 1 − δ,

Dk

(
Pθ̂,P

0) ≤ inf
θ∈Θ

Dk

(
Pθ,P

0)+ 2 + 2
√

2 log
(

1
δ

)
√
n

.

Joint work with Badr-Eddine Chérief-Abdellatif (CNRS).

Chérief-Abdellatif, B.-E. and Alquier, P. Finite Sample
Properties of Parametric MMD Estimation : Robustness
to Misspecification and Dependence. Bernoulli, 2022.
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Example : Gaussian mean estimation
Example : Pθ = N (θ, σ2I ) for θ ∈ Rd .
Using a Gaussian kernel k(x , y) = exp(−∥x − y2∥/γ2),

D2
k (Pθ,Pθ′) = 2

(
γ2

4σ2 + γ2

) d
2
[
1 − exp

(
−∥θ − θ′∥2

4σ2 + γ2

)]
.

Together with the previous result, this gives :

∥θ̂MMD
n − θ0∥2

≤ −(4σ2 + γ2) log

[
1 − 4

(1 +
√

2 log 1/δ)2

n

(
4σ2 + γ2

γ2

) d
2
]
.

γ = 2dσ2 ⇒

∥θ̂MMD
n − θ0∥2 ≤ dσ2 8e(1 +

√
2 log 1/δ)2

n
(1 + o(1)).
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Variance-aware bounds (1/2)

{
E
[
Dk

(
P̂n,P

0
)]}2

≤ E
[
D2

k

(
P̂n,P

0
)]

= E
[∥∥∥(1/n)∑(µ(δXi

)− µ(P0))
∥∥∥2

H

]
= (1/n)E

[
∥µ(δX1)− µ(P0)∥2

H

]
︸ ︷︷ ︸

=:vk (P0)

Lemma - variance-aware version

E
[
Dk

(
P̂n,P

0
)]

≤
√

vk(P0)

n
≤
√

1
n
.

Pierre Alquier, RIKEN AIP Minimum MMD estimation



Some problems with the likelihood and how to fix them
Minimum MMD estimation

Refinement of the bounds
Applications and extensions

Variance-aware bounds (2/2)

Theorem – bound in expectation

E [Dk(Pθ̂,P0)] ≤ inf
θ∈Θ

Dk(Pθ,P0) + 2

√
vk(P0)

n
.

Theorem – bound in probability
With probability at least 1 − δ,

Dk

(
Pθ̂,P

0) ≤ inf
θ∈Θ

Dk

(
Pθ,P

0)+ 2

√
vk(P0)2 log 1

δ

n
+

8 log 1
δ

3n
.

Joint work with Geoffrey Wolfer (RIKEN AIP).

Wolfer, G. and Alquier, P. Variance-Aware Estimation of Kernel
Mean Embedding. Preprint arXiv :2210.06672.
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Upper-bounding the variance vk(P0)

In the case of the Gaussian kernel

k(x , y) = exp(−∥x − y∥2/γ2)

we have

vk(P0) ≤ 1 − exp

[
−2Tr(VarP0(X ))

γ2

]
≤

{
2Tr(VarP0 (X ))

γ2

1.

Example : Gaussian mean estimation (continued).

Using the variance aware bound

γ = γn → +∞ ⇒ ∥θ̂MMD
n − θ0∥2 ≤ dσ2 4 log 1/δ

n
(1 + o(1)).
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Empirical bound

In practice, we can estimate vk(P0) by

v̂k :=
1

n − 1

n∑
i=1

(
k(Xi ,Xi)−

1
n

n∑
j=1

k(Xi ,Xj)

)
.

We have E(v̂k) = vk(P0), and

Theorem – bound with empirical variance
Assume that k(x , y) = ψ(x − y) ∈ [a, b]. Then, with
probability at least 1 − δ,

Dk

(
Pθ̂,P

0) ≤ inf
θ∈Θ

Dk

(
Pθ,P

0)+2

√
v̂k2 log 1

δ

n
+

32
√
b − a log 1

δ

3n
.
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Generative Adversarial Networks (GAN, 1/2)

Generative model X ∼ Pθ :
U ∼ Unif[0, 1]d ,
X = Fθ(U) where Fθ is some
NN with weights θ.

Dziugaite, G. K., Roy, D. M. & Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. UAI.

Li, Y., Swersky, K. & Zemel, R. (2015). Generative Moment Matching Networks. ICML.

→ proposed to minimize the MMD to learn θ.
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GAN (2/2)

Results from Dziugaite et al. (2015).
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Inference for Systems of SDEs (1/2)

This paper developped the asymptotic theory of MMD :

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv :1906.05944.

They also applied the method to inference in SDEs :

dXt = b(Xt , θ1)dt + σ(Xt , θ2)dWt

easy to sample from the model with a given θ = (θ1, θ2),
they propose a method to approximate the gradient of
the MMD criterion.

Pierre Alquier, RIKEN AIP Minimum MMD estimation



Some problems with the likelihood and how to fix them
Minimum MMD estimation

Refinement of the bounds
Applications and extensions

Inference for Systems of SDEs (2/2)
Example in a (stochastic) Lotka-Volterra model.

Results from Briol et al. (2019) : compare MMD minimization
to Wasserstein minimization.
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Regression

problem with regression : we want to specify and estimate
a parametric model Pθ(X ) for Y |X . MMD requires to
specify a model for (X ,Y ).
natural idea : estimate the distribution of X by
1
n

∑n
i=1 δXi

and use the MMD procedure on Pθ(X ).
the previous theory shows directly that we estimate the
distribution of (X ,Y ) consistently.
it is far more difficult to prove that we estimate the
distribution of Y |X .

Joint work with M. Gerber (Bristol).

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via
Maximum Mean Discrepancy. Preprint arXiv.
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Copulas
another semi-parametric
model : copulas.
asymptotic theory + R
package.

With B.-E. Chérief-Abdellatif (CNRS), J.-D. Fermanian (ENSAE Paris), A. Derumigny (TU Delft).

Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. Estimation of copulas
via Maximum Mean Discrepancy. JASA, to appear.
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Example : Gaussian copulas
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Example : other models
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Bayesian estimation

Variational approximations :

Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes : Robust Bayesian Estimation via
Maximum Mean Discrepancy. Proceedings of AABI.

ABC :

S. Legramanti, D. Durante & P. Alquier (2022). Concentration and robustness of
discrepancy–based ABC via Rademacher complexity. Preprint arXiv :2206.06991.

Sirio Legramanti (Univ. of Bergamo) Daniele Durante (Bocconi University)
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La fin

終わり

ありがとう ございます。
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