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Sequential classification problem - y, € {0, 1}

QO O x given Objective : make sure that
O predict y; : 1 we learn to predict well as
© y; is revealed soon as possible.

Q@ O x given
@ predict yo :
© ) revealed

Q@ O x3given
@ predict y3 : 73
© 3 revealed

Qo ...

Pierre Alquier Introduction to Sequential Prediction



Sequential Prediction

Sequential classification problem - y, € {0, 1}

QO O x given Objective : make sure that
O predict y; : 1 we learn to predict well as
© y; is revealed soon as possible. Keep

Q@ O x given -

@ predict y» : ¥ N
(3] E/g reveajl/zd 7 Z 1(Y: # Vi)

Q@ O x3given =
@ predict y3 : 3 as small as possible for any T,
© y3 revealed without unrealistic

Q ... assumptions on the data.
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Outline of the talk

@ Setting of the problem
@ Definitions
@ Toy examples
@ The regret

@ Exponentially Weighted Aggregation (EWA)
@ Prediction with expert advice
@ Further topics
@ The infinite case

9 Open questions
e Confidence intervals
@ Fast algorithms
@ More open questions
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General notations

@ x; € X.

@ y; € R (regression...) or y; € {0,1} (classification).
@ y, prediction.

@ loss incurred at time t : {(;, y;) for some real-valued loss
function /.
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classification,
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Notations : loss function

General notations

@ x; € X.

@ y; € R (regression...) or y; € {0,1} (classification).
@ y, prediction.

@ loss incurred at time t : {(;, y;) for some real-valued loss
function /.

Classical examples :
o ly,y)=al(y=1,y=0)+b1l(y =0,y =1) for
classification,
o y,y)=(y—y)?orly,y') =y —y| for regression,
° ...
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The data

We want to avoid assumptions on the data (x;, y;), in order to
include situations like :

@ y; = F(xt, ;) and the noise variables ¢, are i.i.d.
® y: = G(Xt—17yt—17xta€t)-
@ y; = H(x, z:,£+) where z, : omitted variables.

o v = I(t,xs, ;).
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The data

We want to avoid assumptions on the data (x;, y;), in order to
include situations like :

@ y; = F(xt, ;) and the noise variables ¢, are i.i.d.
Ve = G(Xt—17yt—17Xta€t)-

ye = H(xt, z¢, £+) where z, : omitted variables.
ye = I(t, x¢, €¢).

ye = J(Br)-
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The data

We want to avoid assumptions on the data (x;, y;), in order to
include situations like :

@ y; = F(xt, ;) and the noise variables ¢, are i.i.d.

Y = G(Xt—17yt—17Xta€t)-

ye = H(xt, z¢, £+) where z, : omitted variables.

ye = I(t, x¢, €¢).

ye = J(Br)-

yve=K(t, (71, 96), (s - oo %e), (V1 -+ -5 Yeo1)s €ty Z2).-

Pierre Alquier Introduction to Sequential Prediction



Setting of the problem Definitions
Toy examples
The regret

Prediction strategy

On the other hand, a realistic prediction cannot be completely
arbitrary.

Pierre Alquier Introduction to Sequential Prediction



Setting of the problem Definitions
Toy examples
The regret

Prediction strategy

On the other hand, a realistic prediction cannot be completely
arbitrary.

@ We have to be able to compute ¥, it can depend on
(x1,.-.,x) and (y1, ...,y 1). We can also use
randomization if necessary.

Pierre Alquier Introduction to Sequential Prediction



Setting of the problem Definitions
Toy examples
The regret

Prediction strategy

On the other hand, a realistic prediction cannot be completely
arbitrary.

@ We have to be able to compute ¥, it can depend on
(x1,.-.,x) and (y1, ...,y 1). We can also use
randomization if necessary.

@ It must be computationnally feasible.

Pierre Alquier Introduction to Sequential Prediction



Setting of the problem Definitions
Toy examples
The regret

Prediction strategy

On the other hand, a realistic prediction cannot be completely
arbitrary.

@ We have to be able to compute ¥, it can depend on
(x1,.-.,x) and (y1, ...,y 1). We can also use
randomization if necessary.

@ It must be computationnally feasible.

@ We can use expert advice.
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What performance can we achieve in this setting ?

Consider binary classification with ¢(y, y’) = 1(y # y’), as we
allowed y; = J(J:), the opponent can always chose y, = 1 — y;

which leads to
-

Z é()?n Yt) =T.

t=1
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well" described by models. These models allow to do “sensible”
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Pierre Alquier Introduction to Sequential Prediction



Setting of the problem Definitions
Toy examples
The regret

What performance can we achieve in this setting ?

Consider binary classification with ¢(y, y’) = 1(y # y’), as we
allowed y; = J(J:), the opponent can always chose y, = 1 — y;

which leads to
-

Z é()?n Yt) =T.

t=1

On the other hand, many real world phenomena can be “quite
well" described by models. These models allow to do “sensible”
predictions.

The extreme case would be the constraint y; = f(x;), where
f € F for a known class F. This is called the realizable case.
Let's study it as a toy example when F is finite.
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Here y; = fi«(x;) where i* € {1,..., M} is unknown.
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A naive strategy

Here y; = fi«(x;) where i* € {1,..., M} is unknown.

Naive strategy
Start with (1) =1 and C(1) = {1,..., M}. At step t,
Q predict ¥, = fi+)(x¢), observe y,

C(t+1)={ie C(t): fi(x) = y:},

@ update { i(t4+1) = min C(t + 1).
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A naive strategy

Here y; = fi«(x;) where i* € {1,..., M} is unknown.

Naive strategy

Start with (1) =1 and C(1) = {1,..., M}. At step t,
Q predict ¥, = fi+)(x¢), observe y,

C(t+1)={ie C(t): fi(x) =y},
Q update { i(t+1)=min C(t+1).
T
VT, ) U y) <M -1
t=1

Pierre Alquier Introduction to Sequential Prediction



Setting of the problem Definitions
Toy examples

The regret
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(Still y; = fix(x;) where i* € {1,..., M} is unknown).

The halving algorithm
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Start with (1) =1 and C(1) = {1,..., M}. At step t,
© predict y;, = “majority vote in C(t)", observe y;,
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The halving algorithm
(Still y; = fix(x;) where i* € {1,..., M} is unknown).

The halving algorithm

Start with i(1) =1 and C(1) ={1,..., M}. At step t,
© predict y;, = “majority vote in C(t)", observe y;,
@ update C(t+ 1) = {i € C(t) : fi(xc) = y:}
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The halving algorithm

(Still y; = fix(x;) where i* € {1,..., M} is unknown).

The halving algorithm

Start with i(1) =1 and C(1) ={1,..., M}. At step t,
© predict y;, = “majority vote in C(t)", observe y;,
@ update C(t+ 1) = {i € C(t) : fi(xc) = y:}

.
VT, Y (e, ye) < loga(M).

t=1
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A feasible objective

Two extremes :
@ playing against the devil y, =1 — y;,

@ assuming a true, exact model F.
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@ playing against the devil y, =1 — y;,
@ assuming a true, exact model F.

Real-life is somewhere in between !
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A feasible objective

Two extremes :
@ playing against the devil y, =1 — y;,
@ assuming a true, exact model F.
Real-life is somewhere in between !

Strategy such that

Zg(.ytayt = mfZE Xt }/t) + i(D

as small as possible!!

-~
= T in the worst case (devil),

= 0 in the ideal case (true model),
almost always in between.
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The regret

Z g(ytu Yt)ﬁ i

t=

C(f(xe), ye)+B(T)

N
10~

n
S

[y
N —_
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The regret

Regret(T)

M-

O(Pe, ye)— f'g}crz 0(f(xe), y:)<B(T)

,.f
Il
—
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The regret

M-

-
Regret(T) (P, ye)— figﬁ__zg(f(xt)?)’t)SB( T)
t=1

,.f
Il
M

Objective
Strategy such that Regret(T) < B(T) as small as possible, at
least B(T) = o(T).
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The regret

M-

-
Regret(T) (P, ye)— figﬁ__zg(f(xt)?)’t)SB( T)
t=1

,.f
Il
M

Objective
Strategy such that Regret(T) < B(T) as small as possible, at
least B(T) = o(T).

We'll see that

o for a bounded ¢, B(T) = O(V/T) always feasible with a
randomized strategy.

@ deterministic results, and B(T) = O(log(T)) or even
B(T) = O(1), possible under more assumptions.
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© Common mistake : machine learning provides good
predictions in practice, but has no theoretical ground.
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Important remarks

©@ Common misunderstanding :
machine learning ~ prediction, opposed to modelization.

© However ! modelization (economics, physics,
epidemiology) is required to build F :

-
Zg(yhyt ;;Z Xt s Yt +B(T)

© Common mistake : machine learning provides good
predictions in practice, but has no theoretical ground.

@ Wrong! We'll see some theoretical results below.
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Proposition

My own view is that machine learning theory is itself a model
for “the performance of a scientist who uses a model for
prediction in an environment where the model might not be

exactly correct”.
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@ Exponentially Weighted Aggregation (EWA)
@ Prediction with expert advice
@ Further topics
@ The infinite case
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Finite number of predictors

Let us start with the case of a finite set of M predictors :

f:(fl,...,f/\/]).
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Finite number of predictors

Let us start with the case of a finite set of M predictors :

f:(fl,...,f/\/]).

What should the fi's be ?
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics

The infinite case

Finite number of predictors

Let us start with the case of a finite set of M predictors :
f:(fl,...,f/\/]).

What should the f;'s be ? By including side information in X;
such as the past X; = (x1, y1, - -

.y Xe—1, Yr—1, X¢), We can have
rich predictors. For example :

ﬂ()"q) = 3;:Txt

where

ﬁt = arg mlnz BTX,
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Expert advice

More importantly, we can use “expert advice” : an expert e
proposes at each time t a forecast y7, why not using it?
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Expert advice

More importantly, we can use “expert advice” : an expert e
proposes at each time t a forecast y7, why not using it?

For a while, we forget about the x;'s. At each time t, M
different forecasts are proposed :
(1 (M
GO, 9.
Some come from models, others from experts. For short we

refer to all of them as “experts advice”. | have to make my own
prediction y; based on this.
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Expert advice

More importantly, we can use “expert advice” : an expert e
proposes at each time t a forecast y7, why not using it?

For a while, we forget about the x;'s. At each time t, M
different forecasts are proposed :
(1 (M
GO, 9.
Some come from models, others from experts. For short we

refer to all of them as “experts advice”. | have to make my own
prediction y; based on this.

Regret(T) = E U Py ye) — mm E W, y)<
=



Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Randomized EWA strategy

EWA : Exponentially Weighted Aggregation. Input :
@ learning rate n > 0,
e initial weights py(1), ..., pi(M) > 0 with 3™ pi(i) = 1.
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Randomized EWA strategy

EWA : Exponentially Weighted Aggregation. Input :
@ learning rate n > 0,
e initial weights py(1), ..., pi(M) > 0 with 3™ pi(i) = 1.

Algorithm 1 EWA (Randomized version)
1. fori=1,2,... do
2:  Draw I, with P(l; = i) = p.(/)

3:  Predict §, = }7t(lt),

; 5(0)
4: revealed, update N — _ pe(D) exp[=nt(9;",ye)]
Ye rev update pei1(1) = Sur L  eprnGY vl

5. end for
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Guarantees (in expectation)

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

2
- nC=T n log(M)

E (Regret(T)) < 5 p
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Guarantees (in expectation)

(Theorem |

Assume that ¢(-,-) € [0, C] (e.g. classification). Then
2
E (Regret(T)) < 1S T - 108(M)
8 U
1 log(M T log(M
- = 8°g—T() = E (Regret(T)) < C %.
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Guarantees (in expectation)

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

2
- nC=T n log(M)

E (Regret(T)) < 5 p

_ 1, [8log(M) = E (Regret(T)) < C

T log(M)
C T ‘

2

@ the expectation is only w.r.t the algorithm. No
assumption on the data.
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The infinite case

Guarantees (in expectation)

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

2
- nC=T n log(M)

E (Regret(T)) < 5 p

_ 1, [8log(M) = E (Regret(T)) < C

T log(M)
C T ‘

2

@ the expectation is only w.r.t the algorithm. No
assumption on the data.

@ possible to take n; ~ 1/4/t.
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics

The infinite case

Guarantees (in expectation)

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

2
B (Resret(T) < nC2T N log(M)
8 n
1 — T log(M
- C 80g—75) = E (Regret(T)) < C #‘

@ the expectation is only w.r.t the algorithm. No
assumption on the data.

@ possible to take n; ~ 1/4/t.
@ what about deterministic prediction ?
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

EWA strategy

Assume that ¢(-, y) is convex. Input :

@ learning rate n > 0,

@ weights pi(1),..., p1(M).
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

EWA strategy

Assume that ¢(-, y) is convex. Input :

@ learning rate n > 0,

@ weights pi(1),..., p1(M).

Algorithm 2 EWA
cfori=1,2,... do _
Predict y, = Z,"il pe(7) Ar(l):

1
2
3:  y; revealed, update pyy1(i) =
4

pe(i) exp[—nl(7{" yr)]

SM pe() expl—nt(9Y ye)]

. end for
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

EWA - convex case

Assume that ¢(-,-) € [0, C] and {(-, y) is convex. Then

C2T  log(M
n +0g( ).

R t(T) <
egret(T) < 2 p
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EWA - convex case

Assume that ¢(-,-) € [0, C] and {(-, y) is convex. Then

C2T  log(M
n +0d )

R t(T) <
egret(T) < 2 p

In other words, without any assumption on the data, with

_ 1 /8log(M)
=y T

T

-
;f(f/n}/t) < i:rlrj.iﬂMtZ:;g <}7t(i)7yt> e Tlog(M).
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example : air quality prediction

Vol 151 0.2 2010)

.1 #L: Journal de la Société Frangaise de Statistique
> 2
0

é ielle de prédil H
ie générale et icati ala
prévision de la qualité de I'air et a celle de la
consommation électrique

P —

" o the prcic

Gilles Stoltz

FRAID) m Viien Ml (NRIA . o
Marie Do 1 Gerctinoriz nd Boi M
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The infinite case

The data and the problem

@ 126 days during summer 2001. 241 stations in France and
Germany.
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The data and the problem

@ 126 days during summer 2001. 241 stations in France and
Germany.

@ one-day ahead prediction, quadratic loss.
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Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

The data and the problem

@ 126 days during summer 2001. 241 stations in France and
Germany.
@ one-day ahead prediction, quadratic loss.

@ typical ozone concentrations between 40pgm—3 and
150pgm—3, a few extreme values up to 240ugm 3.
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The infinite case

The data and the problem

@ 126 days during summer 2001. 241 stations in France and
Germany.

@ one-day ahead prediction, quadratic loss.

@ typical ozone concentrations between 40pgm—3 and
150pgm—3, a few extreme values up to 240ugm 3.

@ M = 48 experts taken from a paper in geophysics by
choosing a physical and chemical formulation, a numerical
approximation scheme to solve the involved PDEs, and a
set of input data.
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Prediction by the experts

110 , x . T
100
90
BOR
70RS
60
50
40

L ! ! !
30O 5 10 15 20

Figure — Predictions by the 48 experts for one day at one station.
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Further topics
The infinite case

Exponentially Weighted Aggregation (EWA)

Numerical performances

| RMSE

Best expert | 22.43
Uniform mean | 24.41
EWA 21.47

Figure — Numerical performances (RMSE).
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Weights

Figure — Evolution of the weights p;(t) w.r.t t.
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Further topics

Better regret bounds

We obtained
Regret(T) = O(\/ T log(M))

for EWA.
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Further topics

Better regret bounds

We obtained
Regret(T) = O(\/ T log(M))

for EWA. Under a stronger assumption (exp-concave loss ¢),

Regret(T) = O(log(M)).
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Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Further topics

Better regret bounds

We obtained
Regret(T) = O(\/ T log(M))
for EWA. Under a stronger assumption (exp-concave loss ¢),
Regret(T) = O(log(M)).

Other strategies

See the introduction by Shalev-Shwartz :

@ online ridge regression,

o
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Further topics

Better regret bounds

We obtained
Regret(T) = O(\/ T log(M))
for EWA. Under a stronger assumption (exp-concave loss ¢),
Regret(T) = O(log(M)).

Other strategies

See the introduction by Shalev-Shwartz :

@ online ridge regression, that is itself a special case of

@ online gradient descent...

o
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Setting of the problem Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
Open questions The infinite case

THE FOLLOWING CONTENT MAY
CONTAIN ELEMENTS THAT ARE
NOT SUITABLE FOR SOME AUDIENCES.
VIEWER DISCRETION IS ADVISED.
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The infinite case

Infinite family of predictors fy : X — R, 6 € ©.
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The infinite case

Infinite family of predictors fy : X — R, 6 € ©.

@ learning rate n > 0.
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The infinite case

Infinite family of predictors fy : X — R, 6 € ©.
@ learning rate n > 0.

@ prior distribution on ©, p; = 7.
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Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

The infinite case

Infinite family of predictors fy : X — R, 6 € ©.
@ learning rate n > 0.

@ prior distribution on ©, p; = 7.

Algorithm 3 Randomized EWA (general case)
cfori=1,2,... do

Draw 6; ~ p;, predict y; = fy,(x:),

1

2

3.y revealed, update p;,1(df) = fe:fg[__"ié{iéfi)y;zl)‘]’i?g;)
4

- end for
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The infinite case

Regret bound in the general case

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

E (Z K()?t,yt)> < ir;f l/zg(fﬂ(xt)ayt)p(dﬁ)

2T K
L N (p,m)
8 n
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Regret bound in the general case

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

E (Z K()?t,yt)> < ir;f [/Zg(fﬁ(xt)a)/t)l)(dﬁ)

2T K
L N (p,m)
8 n

@ the expectation is w.r.t the algorithm. Convex case :
possible to replace randomization by averaging.
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Regret bound in the general case

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

E (Z K()?t,yt)> < ir;f [/Zg(fﬁ(xt)a)/t)l)(dﬁ)

2T K
L N (p,m)
8 n

@ the expectation is w.r.t the algorithm. Convex case :
possible to replace randomization by averaging.
@ the inf. is with respect to any probability distribution p.
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The infinite case

Regret bound in the general case

Assume that ¢(-,-) € [0, C] (e.g. classification). Then

E (Z K()?t,yt)> < ir;f [/Zg(fﬁ(xt)a)/t)l)(dﬁ)

2T K
L N (p,m)
8 n

@ the expectation is w.r.t the algorithm. Convex case :
possible to replace randomization by averaging.

@ the inf. is with respect to any probability distribution p.

@ KC(p, m) is the Kullback divergence.
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Reminder

The Kullback divergence, or relative entropy :

K(p, ) = [log [SE(9)] p(dv) if p < ,
’ +00 otherwise.

Pierre Alquier Introduction to Sequential Prediction



Prediction with expert advice
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Reminder

The Kullback divergence, or relative entropy :

K(p, ) = [log [SE(9)] p(dv) if p < ,
’ +00 otherwise.

When 7 is uniform on {1,..., M} and when p is the Dirac
mass on i € {1,..., M} then

K(p, ) = log(M)

so the result in the finite case is indeed a corollary of the
general result.
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Link with Bayesian statistics

Pe+1(d0) oc exp[—nl(fs(xc), ye)]pe(dO

o {H exp[—nl(fy(x), yi)] } m(do).

i=1
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Link with Bayesian statistics

Pe+1(d0) oc exp[—nl(fs(xc), ye)]pe(dO

o {H exp[—nl(fy(x), yi)] } m(do).

i=1

Assume x; deterministic yi ~ N(fy(x:),0?), take n = 1 and
Uy,y') = (y y . Then the likelihood is given by

‘C(Qayla SR >yt) = Hexp[—nf(ﬁg(x,-),y,-)]

i=1
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Link with Bayesian statistics

Pe+1(d0) oc exp[—nl(fs(xc), ye)]pe(dO

o {H exp[—nl(fy(x), yi)] } m(do).

i=1

Assume x; deterministic yr ~ N(fy-(xt),0?), take n = 1 and
Uy,y') = (y y . Then the likelihood is given by

‘C(Qayla SR 7yt) = Hexp[—nf(ﬁg(x,-),y,-)]

i=1

= prr1(d0) o< L(0, y1, ..., ye)7w(dE) o< w(O|y1, ..., yr)-




Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Concentration of the posterior in Bayesian statistics

The asymptotic concentration
of w(O|y1,...,y:) is a well-
known topic. Requires :

A.W. van der Vaart
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Concentration of the posterior in Bayesian statistics

The asymptotic concentration
of w(O|y1,...,y:) is a well-
known topic. Requires :

© model well specified,

A.W. van der Vaart
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Concentration of the posterior in Bayesian statistics

The asymptotic concentration
of w(O|y1,...,y:) is a well-
known topic. Requires :

© model well specified,

@ a technical "test”
condition,

A.W. van der Vaart
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Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Concentration of the posterior in Bayesian statistics

The asymptotic concentration
of w(O|y1,...,y:) is a well-
known topic. Requires :

© model well specified,

@ a technical "test”
condition,

© the prior mass condition :
find r such that

m{B(0",¢)} > e "),

A.W. van der Vaart

B(0,x) ={0":||0—0'|| < x}.
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The infinite case

Explicit regret bound

Here, we did not assume the model is well speficied, nor the
test condition, nor 7 = 1. Put 7y as 7 restricted to B(0,¢).

T

E Zé()?t»}/t)

t=1
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Explicit regret bound

Here, we did not assume the model is well speficied, nor the
test condition, nor 7 = 1. Put 7y as 7 restricted to B(0,¢).

E (Z é(ﬁt»)’t))

t=1

< ir;f [/;ﬁ(ﬁg(xt),yt)p(dﬂ) + 77C8 T + ’C(I; )
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Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Explicit regret bound

Here, we did not assume the model is well speficied, nor the
test condition, nor 7 = 1. Put 7y as 7 restricted to B(0,¢).

E (Z é(ﬁt»)’t))

t=1

<inf _/;ﬁ(ﬁg(xt),yt)p(dﬂ) + 77C8 T + ’C(I; W)]

<inf /Zé(fﬁ(xt),yt) +"%T+}C( p ’”)]
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Prediction with expert advice
Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Explicit regret bound

Here, we did not assume the model is well speficied, nor the
test condition, nor 7 = 1. Put 7y as 7 restricted to B(0,¢).

-
E (Z é(ﬁt,yt)> (assume 0 — ((fy(x:), y¢) is L-Lipschitz)

t=1

<inf _/;ﬁ(ﬁg(xt),yt)p(dﬂ) + 77C8 T + ’C(I; W)]

p

<inf /Zé(fﬁ(xt),yt) +"%T+}C( p ’”)]

T 2
T €
<inf 3 ((f(x). ye) + inf (TLe + 77% a ))
. n
t=1

+
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Explicit regret bound

dl 1
B [Regret(T)] = inf ( T(18% + Le) + 25 )
€ n
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Exponentially Weighted Aggregation (EWA) Further topics
The infinite case

Explicit regret bound

E [Regret(T)] = ;21; <T(7]B2 + Le) + %) :

The choice ¢ = d/(TLn) and n = \/d/(TB?) leads to the

regret bound

sl =< o7 [oe ()]
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Open questions

e Open questions
e Confidence intervals
@ Fast algorithms
@ More open questions
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Open questions

Example - GDP growth

Prediction of Quantiles by Statistical Learning
and Application to GDP Forecasting

Pierre Alquier' and Xisoyin Li*

 Adlphe Chanvin
se, France

? Laborataire de Matbémat uiversite de Ce
ver

o tha the i

1 best pre o
onctons. Tn particla, uing the quazte o function
o buikd coufidence intervals. We apply these results to

ricion e contence eons 1 the i Grss
Domnstic Produc (GDP) grovth, with proming res

Statitical fes, quantil
L

e inequalites,

u
-

1 Introduction

Motimed by conomicsproblee, e eeliction of e seress o ofthe ot

emblematic problems of

are used that come

from such various fields as parametric statistics, statistical learning, computer
cience or game theory

In the parametsic approach, one asumes that the time seri
from n pasametric model, e.5. ARMA or ARIMA, sce (23] It is then possible to
estimate the parameters of the model aud to build confidence ntervals on the
prevision. However, such an

In the statistical learni

erated

assumption is unrealistc in most applicatiors.

point of view, one usually tries to avoid such restric
ive parametric assumptions - s, e.g., [1] for the ouline approach dedicated
to the prediction of individual sequences, and [GTS) for the batch approach

a few atteation s been paid to the comstruction of

confidence intervals or to any quantiication of the precision of the prediction

. e, s . P, (5 ) S 2018 LA, . 2200 2012

Confidence intervals
Fast algorithms
More open questior

In France

LNAI 7569

Jean-Gabriel Ganascia
Philippe Lenca
Jean-Marc Petit (Eds.)

Discovery Science

15th International Conference, DS 2012
Lyon, France, October 2012
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GDP growth forecasting

Objective : during the 3rd month of quarter t, predict what
will be the GDP growth during the quarter : AGDP,.
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GDP growth forecasting

Objective : during the 3rd month of quarter t, predict what
will be the GDP growth during the quarter : AGDP,.

Available from INSEE :
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GDP growth forecasting

Objective : during the 3rd month of quarter t, predict what
will be the GDP growth during the quarter : AGDP,.

Available from INSEE :

©Q the past : AGDP;_q, ...,
AGDPq, with t =1

INSEE 1088-T1.
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GDP growth forecasting

Objective : during the 3rd month of quarter t, predict what
will be the GDP growth during the quarter : AGDP,.

Available from INSEE :

©Q the past : AGDP;_q, ...,
AGDPq, with t =1

INSEE 1088-T1.

© French business surveys.
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GDP growth forecasting

Objective : during the 3rd month of quarter t, predict what
will be the GDP growth during the quarter : AGDP,.

Available from INSEE :

©Q the past : AGDP;_q, ...,
AGDPq, with t =1

INSEE 1088-T1.

© French business surveys.

© much more...
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Business surveys

Business surveys : forms sent monthly to big companies, and
to a sample of small companies. These data are to be taken
into account because

Pierre Alquier Introduction to Sequential Prediction



Confidence intervals
Fast algorithms
Open questions More open questions

Business surveys

Business surveys : forms sent monthly to big companies, and
to a sample of small companies. These data are to be taken
into account because

© they don't come from economists, but from economic
agents.
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Business surveys

Business surveys : forms sent monthly to big companies, and
to a sample of small companies. These data are to be taken
into account because

© they don't come from economists, but from economic
agents.

© they are available almost immediately. During the 3rd
month of quarter t, the analysis of the forms for the 1st
and the 2nd months are already known.
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Business surveys

Business surveys : forms sent monthly to big companies, and
to a sample of small companies. These data are to be taken
into account because

© they don't come from economists, but from economic
agents.

© they are available almost immediately. During the 3rd
month of quarter t, the analysis of the forms for the 1st
and the 2nd months are already known.

— this information is summarized in the business climate
indicator I,_1.
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M. Cornec’s predictors

— f
AGDPt =« + ﬁAGDPtf]_ + 7/1‘71 _'_ 6(/1'7]_ - It72)|/t71 - lt72|
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M. Cornec’s predictors

— f
AGDPt =« + BAGDPtf]_ + 7/1‘71 _'_ 6(/1'7]_ - It72)|/t71 - lt72|
proposed by

30" CIRET Conference, New York, October 2010

Constructing a conditional GDP fan chart with an
application to French business survey data

Matthieu CORNEC
INSEE Business Surveys Unit

economic forecasters, it has become a more common practie 1o provide point
projection wih a densiy forecast, This realisti view acknowledges that nobody can predict
futire evoltion of the economic outlook with absolute cerainty. Interval confidence and density
forecasis have tools
o any point forecast (or a review see Tay and Walls 2000). Since 1996, the Cental Bank of
England (CBE) has published a densiy forecast of inflaon in ts quarterty Infaton Report, S0
G 4. More recently, INSEE has aiso pubished a fan chart of its Gross Domestic
Production (GDP) prediction in the Note de Conjoncture. Both methodobgies estimate
ters of exponental famiies on the sample of past errrs. They thus suffer from some
drawbacks. First, INSEE fan chartis uncondiional which means that whatever the economic
outook i, the magnitude of the displayed uncertainty is the same. On the contrary, it &
‘common bekel among practaioners that the forecasting exercise highy depends on the state of

specialy durng crss. A second lmitation is that fan chart is not
reproducible as it ntoduces subjectiiy. Eventually, another inadequacy s the paamel
shape of the diibution. In this paper, we tackle those issues 1o prowide a reproduchle

parametrc fan chart. For this, following Taylor 1999, we combine quantie
regression approach together with regulaization techriques fo dsplay a density forecast

conditonal on the information. In the same time, we buil & Forecasing Risk Index
ted 10 this fan char 1o measure the intrnsic Gificuty of the forecasting exercise. The
proposed methodology s appled to the French economy. Using balances of diferent business.

surveys, the GDP fan chart captures effcienty the growth stal durng the crisis on an reaktime
basis. Moreover, our Forecasting Risk Index mcreased substantaly in this period of tubalence,
showing signs of growing uncertainy.

Key Words:  density forecast, quantie fegression, business fendency surveys, fan chart

JEL Classification: ~ E32, E37, E86, C22
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M. Cornec’s predictors

— f
AGDPt =« + ﬁAGDPtf]_ + 7/1‘71 _'_ 5(/1'7]_ - It72)|/t71 - lt72|
proposed by

30" CIRET Conference, New York, October 2010

Constructing a conditional GDP fan chart with an
application to French business survey data

@ forecasts similars to
the ones by the most
o S e, s o complex models used

futire evoltion of the economic outlook with absolute cerainty. Interval confidence and density
forecasts have thus tools
o any point forecast (or a review see Tay and Walls 2000). Since 1996, the Cental Bank of
England (CBE) has published a densiy forecast of inflaon in ts quarterty Infaton Report, S0
called ‘fan chart”. More recently, INSEE has also pubished a fan chart of its Gross Domestic -
Production (GDP) prediction in the Note de Conjoncture. Both methodobgies estimate
ters of exponental famiies on the sample of past errrs. They thus suffer from some
drawbacks. First, INSEE fan chart is uncond; that whatever the economic
outook i, the magnitude of the displayed uncertainty is the same. On the contrary, it &
‘common bekel among practaioners that the forecasting exercise highy depends on the state of

. especialy durng crss. A second Imitation is that fan chart is not
reproducible as it ntoduces subjectiiy. Eventually, another inadequacy s the paamel
shape of the diibution. In this paper, we tackle those issues 1o prowide a reproduchle
parametrc fan chart. For this, following Taylor 1999, we combine quantie
pproach together pilaization techniques to dsplay a density forecast
information. In the same time, we buil & Forecasing Risk Index
intinsic dficuty of the forecasting exercise. The
jied 0 the French Using 5 of different business
surveys, the GDP fan chart captures effcienty the growth stall uring the crsis on an feaktim

ing Risk Index creased substantaly in this period of tubalence,
showing signs of growing uncertainy.

Key Words:  density forecast, quantie regression, business tendency surveys, fan chart

JEL Classification: ~ E32, E37, E86, C22
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M. Cornec’s predictors

— f
AGDPt =« + ﬁAGDPtf]_ + 7/1‘71 _'_ 5(/1'7]_ - It72)|/t71 - lt72|
proposed by

30" CIRET Conference, New York, October 2010

Constructing a conditional GDP fan chart with an
application to French business survey data

@ forecasts similars to
the ones by the most
o S e, s o complex models used

futire evoltion of the economic outlook with absolute cerainty. Interval confidence and density
forecasts have thus tools

1 any pont forecas (o a review see Tay and Walls 2000) Since 1996, the Ceniral Bank of
England (CBE) has publshed a denssy forecast of infaton i €5 quarer Infaton Repor, S0 y
called “an chart”, -

cnar ore receny. INSEE N as pubdshed a an cha f 15 Gross Doncstc
Producton (GDP) predicion Eonpncure. o - csimate
s o exponentl famies on the sample of past erors. They hus sufr rom some
et Frst NSEE fan e = nconaionl whe means 1t Whateer e sconome _— f
outook . the maguce of the dplayed unceray i he e, On e conany, & .
Common bkl Among praciioners thal th frecasing execie Hghy depends o the ite of
e e e g S et @ when AGDP, is small
reproduce 5 1 Ao subeciy. Evertuahy, ancier madequacy i he paamel: t '
Shage of he iuton I paper, o acke hose 65 1o pode 4 eprOcD
Condiiona an non paramet fan char. For i, oluing Taykr 1998, we combine quante
regression approach togethr with regulanzaton techniques fo dspiay a densty forecast t e accura Cy
Condions on he avakabe ormaon. I he S e, we bukd & Forecasing Rk Index
asaocatd 1o this fan cha 1o measure the nrnsi: il of he forecasing xercse. The
. s appied 100 Using alances of ifrent business

P e L T .
g e e e B sy et AR eteriorates.

Key Words:  density forecast, quantie regression, business tendency surveys, fan chart

JEL Classification: ~ E32, E37, E86, C22
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Forecastings

Qut-of-sample forecasts

GDP growth rate(%)

—— GDP growth
Forecast
T T T T T T
2000 2002 2004 2006 2008 2010

-1.5

Figure — Using M. Cornec's predictor and the absolute loss function
U(x,x") = |x = X|.
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Confidence intervals

Out-of-sample forecasts

GDP growth rate(%)

~ 7| — GDP growth
5%-quantile forecast
95%-quantile forecast

T T T T T T

2000 2002 2004 2006 2008 2010

Figure — Using quantile loss ¢(x, x") = (x — x")(7 — 1(x — x’ < 0)).
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Matthieu Cornec - Xiaoyin Li
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Algorithm 15 Methodology

Preliminaries:
Observe (yg, ..., YTo-1)
for t ="Ty,...,T:
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1L Output:
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Application : oil prediction forecasting

BHP_P7 BHP_I2
2400 = 2700 =
2600
2500
2a00-
2300
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00 0 500 1000 1500 2000 2500 3000 3500 4000
QwW_P14 BHP P13
1600 = =
1400
12001
1000
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600
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2001
Ny _— L wmeol 14
500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

Figure — 104 physical models build to predict oil production in
various wells.
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Results
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Figure — Confidence intervals by R. Deswarte's algorithm.
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Results
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Figure — Confidence intervals by R. Deswarte's algorithm.
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Conformal prediction

Another approach was pro-
posed by Vovk and co-
authors.
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Conformal prediction

Another approach was pro-

posed by Vovk and co- Rlgorithmic Learning

authors. ina Random World

It is extremely nice, flexible
and theoretically grounded.
But requires stochastic as-
sumptions on the data. Also,
very different from the pre-
vious approaches, so would
be too long to explain here...
so read :
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Fast algorithms?

In the infinite case, the com-
putation of EWA might be
infeasible or very slow...
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Fast algorithms?

In the infinite case, the com-
putation of EWA might be
infeasible or very slow...

In Bayesian  statistics,
fast  approximations  of
m(0|y1, ..., y:) available via
“variational inference”.
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Fast algorithms?

In the infinite case, the com-
putation of EWA might be
infeasible or very slow...

In Bayesian  statistics,
fast  approximations  of
m(0|y1, ..., y:) available via
“variational inference”.

04265v2 [cs.LG] 13 Apr 2017

arXiv:1703

Similar approaches are cur-
rently being developped in
the online (sequential predic-
tion) framework for p;...
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Other (fast) approximations

Perturbed Bayesian Inference for Online

stic Particle Gradient Descent for Infinite Ensembles . N
Parameter Estimation
Atsushi Nitanda *? and Taiji Suzuki /2%

C Atsushi Nitanda and Taiji Suzuki Mathieu Gerber Kari Heine
S ! Graduate School of Information Science and T gy The Usivensiy of Tokyo
N Conter tor Advanced ncllgence Project. RIKEN
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1 Introduction
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it dimensional nonconvex problems. Morcover, we show an inerior opimaliy prop-
erty of alocal opinlity condicion used in our nalysis.
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fier, from the feature space (o the range (1, 1], which is required o minimize the expected
classifcation error. The ensemble, including boosting and bagging. is one method used 1o
solve this problem, by constructing a complex classifier by combining base classifiers. 1t
s well-known empirically that such a clasifier asins good generalization performance in

experiments and applications (312|511,

metric models, the focus of this paper. Indeed. cursent approsches to online parsncter

e
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More open questions
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More open questions

@ theoretical study of the confidence intervals.
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More open questions

@ theoretical study of the confidence intervals.

@ theoretical study of the fast algorithms.
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More open questions

@ theoretical study of the confidence intervals.
@ theoretical study of the fast algorithms.

@ causal inference?
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More open questions

@ theoretical study of the confidence intervals.
@ theoretical study of the fast algorithms.
@ causal inference ?

@ tests?
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More open questions

@ theoretical study of the confidence intervals.
@ theoretical study of the fast algorithms.

@ causal inference ?

@ tests?
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Thank you !'!
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