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Talk based on the preprint :

@ P. Alquier & J. Ridgway (2017). Concentration of tempered posteriors and of their variational
approximations. Preprint arxiv :1706.09293.
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Outline of the talk

€@ Introduction : tempered posteriors & variational approx.
@ Tempered posteriors
@ Variational approximations

© Main results
@ Concentration of the tempered posterior
@ A result in expectation
@ The misspecified case

© Applications
@ Gaussian VB
@ Matrix completion
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Introduction : tempered posteriors & variational approx. e pesiares

Variational approximations

Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Ps,0 € ©} dominated by Q : ?1_’:;? = py. Prior m on ©.
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Introduction : tempered posteriors & variational approx.

Tempered posteriors
Variational approximations

Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Py,0 € ©} dominated by Q : 922 — p,. Prior m on ©.

aQ —
The likelihood
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Tempered posteriors
Variational approximations

Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Ps,0 € ©} dominated by Q : (fi—':g = py. Prior m on ©.
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7a(d0) o Lo(6)7(d6).

Pierre Alquier Concentration of variational approximations



Introduction : tempered posteriors & variational approx.

Tempered posteriors
Variational approximations

Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Py,0 € ©} dominated by Q : C(li—'zg = py. Prior 7 on ©.

7a(d0) o Lo(6)7(d6).

The tempered posterior - 0 < a < 1

Tna(dl) o< [Ly(0)]“7(d0).

A\
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Introduction : tempered posteriors & variational approx. e pesiares

Variational approximations

Various reasons to use a tempered posterior

@ easier to sample from

@ G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing. J
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Variational approximations

Various reasons to use a tempered posterior

@ easier to sample from

@ G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing. J

@ robust to model misspecification

@ P. Griinwald and T. van Ommen (2017). Inconsistency of Bayesian Inference for Misspecified
Linear Models, and a Proposal for Repairing It. Bayesian Analysis.
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Variational approximations

Various reasons to use a tempered posterior

@ easier to sample from

@ G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing. J

@ robust to model misspecification

@ P. Griinwald and T. van Ommen (2017). Inconsistency of Bayesian Inference for Misspecified
Linear Models, and a Proposal for Repairing It. Bayesian Analysis.

@ theoretical analysis easier

@ A. Bhattacharya, D. Pati & Y. Yang (2016). Bayesian fractional posteriors. Preprint
arxiv :1611.01125.
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Introduction : tempered posteriors & variational approx. e pesiares

Variational approximations

Bhattacharya, Pati & Yang's approach (1/2)

The a-Rényi divergence for a € (0, 1)

a—1 .
Da(P’R):{ﬁlogf(%) dPif P< R
+00 otherwise.
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Variational approximations

Bhattacharya, Pati & Yang's approach (1/2)

The a-Rényi divergence for a € (0, 1)

a—1 .
Da(P,R):{ Lolog [(4E)" " dPif P< R

d
+00 otherwise.

All the properties derived in :

@ T. Van Erven & P. Harremos (2014). Rényi divergence and Kullback-Leibler divergence. IEEE
Transactions on Information Theory.

Among others, for 1/2 < «, link with Hellinger and Kullback :

Hz(Pv R) < Da(PJ R) 7 ]C(Pv R)

Pierre Alquier Concentration of variational approximations



Introduction : tempered posteriors & variational approx.

Tempered posteriors
Variational approximations

Bhattacharya, Pati & Yang's approach (2/2)

B(r) = {9 € O : K(Pgy, Pg) < r and Var {Iog 5:0(();;))} < r.}

Theorem (Bhattacharya, Pati & Yang)

For any sequence (r,) such that
—log 7[B(rn)] < nr,

we have

P [/ Do(Py, Pgy)mn,a(d0) < anl >1-— 2

1—a nr,
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Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered)
posterior :
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Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered)
posterior :

@ Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
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Computational issues

Popular methods to compute / sample from the (tempered)
posterior :
@ Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
@ optimization methods : variational Bayes (VB) and
expectation-propagation (EP).
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Computational issues

Popular methods to compute / sample from the (tempered)
posterior :
@ Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
@ optimization methods : variational Bayes (VB) and
expectation-propagation (EP).
Principle of VB : chose a family F of probability distributions
on © and approximate 7, , by a distribution in F :
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Computational issues

Popular methods to compute / sample from the (tempered)
posterior :
@ Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
@ optimization methods : variational Bayes (VB) and
expectation-propagation (EP).
Principle of VB : chose a family F of probability distributions
on © and approximate 7, , by a distribution in F :

Tna = argmin K(p, Tpa).
pEF
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Variational approximations

Variational approximations

Tna = argmin K(p, Tp o)
pEF

=argmin} —« ! Z log po(Xi)p(dO) + K(p, 7)
/4

pEF

Examples :
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Variational approximations

Variational approximations

Tna = argmin K(p, Tp o)
pEF

=argmin{ —« 1leogpg(X,-)p(dG)—l—lC(p,7T) :
peEF /I’I,

Examples :
@ parametric approximation

F={N(pX):peR)LeS}.
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Variational approximations

Variational approximations

Tna = argmin K(p, Tp o)
pEF

_arggy]r;{—oz/ Z|nge )p(dO) + K(p, )}

Examples :
@ parametric approximation

F={N(pX):peR)LeS}.

@ mean-field approximation, © = ©; x ©, and

F {p: p(df) = p1(dbr) x p2(do2)}.
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Concentration of the tempered posterior
Main results A result in expectation
The misspecified case

Extension of previous result to VB

Assume that (r,) is such that there is a distribution p, € F

with
/ K(Pans Po)pa(d6) < 1o, / E [Iogz ( ;fei(();,-))ﬂ pa(d0) < 1,
i

K(pn, ) < nrp.
Then, for any a € (0,1),

P {/ Do (P, Po,)7na(df) < Mrn} >1-— i

—
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Concentration of the tempered posterior
Main results A result in expectation
The misspecified case

A simpler result in expectation

If we only require that there is p, € F such that

/ K(Pao, Po)pn(d6) <

and
K(pn, ) < nry,

then, for any « € (0,1),

rp.

5 U D‘“(P@’Peo)ﬁn,a(de)] _lta

T 11—«
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Concentration of the tempered posterior
Main results A result in expectation
The misspecified case

Misspecified case

Assume now that Xi, ..., X, i.i.d from Q ¢ {P,,0 € ©}.
Put :
0" .= arg min K(Q, Py).

Assume that there is p, € F such that

/]E [Iog C:l/; } pn(df) < r, and K(p,, 7) < nry,

then, for any o € (0,1),

1
CK(Q,Pyp) +

—« 11—«

rn.

E [ [ouea oma(de)] <
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P Matri leti
Applications atrix completion

e Applications
@ Gaussian VB
@ Matrix completion
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e Matri leti
Applications atrix completion

Gaussian VB

o Let © = RP.
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Gaussian VB

o Let © = RP.

@ We start with the family of approximations

Fg={®(d0;m¥), meR‘TLegcCSIR)},
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Gaussian VB

o Let © = RP.

@ We start with the family of approximations
Fg={®(d0;m¥), meR‘TLegcCSIR)},
@ We assume that for a model {py, 0 € ©} there exists a
measurable real valued function M(-) and p € N*U {1}
llog ps(X1) — log por (X)| < M(X,) |16 — ¢'|15”

Furthermore we assume that
EM(Xy) =: B, EM?(X;) =: B, < o0.
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Gaussian VB
Matrix completion

Applications

Application of the result

Let the family of approximation be F with F%,, C F as
defined above. We put

B, B d
r,,:—l\/—22vC—|ogn
n o n n

Then for any o € (0, 1),

1
JEUDQ(Pg,PQO)%,,,a(de|Xf) <1t

T 11—«
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Gaussian VB

e Matri leti
Applications atrix completion

Stochastic Variational Bayes

@ To implement the idea we write
Fg ={o(do; m,CC*), (m,C)e BNRI x S7}.

F:x=(m,C)eRxR™ — E[f(x,&)] = K(pm,c,mn)
where & ~ N(0, I,)
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Stochastic Variational Bayes

@ To implement the idea we write
Fg ={o(do; m,CC*), (m,C)e BNRI x S7}.

F:x=(m,C)eRxR™ — E[f(x,&)] = K(pm,c,mn)
where & ~ N(0, I,)

@ The optimization problem can be written

min  E[f(x,§)],

x€BNRI xSI

where

dd,, cct
F((m, €).€) := log pmy.ce( ¥7) + log — 2= (m + CE)
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Gaussian VB

P Matri leti
Applications atrix completion

We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input : xo, X{', v7
For ie{l,---,T},
a. Sample & ~ N(0, Iy)
b. Update
X¢ <= Pg (X1 — 77V F(xe-1, &)
End For .

Output : X7 = + 23:1 Xe

where Vf is the gradient of the integrand in the objective
function

Pierre Alquier
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Gaussian VB

e Matri leti
Applications atrix completion

@ Assume that f is convex in its first component x and that
it has L-Lipschitz gradients.

@ Define 7% ,(dA|X") to be the k-th iterate of the algorithm

For some C,

B, B d[1 Y 1 16]I> d
L=y 2y — -
! nvnzv{nL og(z?nC)ijgz * ny?  2n
with 7,(:%, we get

1+« 1 2BL
E | [ Do(Py, Py, )75 (dOIXM)| < 3 ,
[ Dutn P80 < T 2
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Gaussian VB

Applications Matrix completion

Matrix completion : notations

The parameter 6 is a matrix M® € R™P with m,p > 1.
Under Py, the observations are random entries of this matrix
with possible noise :

Yi=M° . +¢,

ik Jk

where the (i, jx) are i.id U({1,...,m} x {1,...,p}). Assume
that the g, are i.i.d N(0,02), 0% known. We have

1 < (M ,2 M — N|2
}C(PM>PN Z >.I J :H HF

2
mpllj1 20°mp
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Matrix completion : notations

The parameter 6 is a matrix M® € R™P with m,p > 1.
Under Py, the observations are random entries of this matrix
with possible noise :

Yi=M° . +¢,

ik Jk

where the (i, jx) are i.id U({1,...,m} x {1,...,p}). Assume
that the g, are i.i.d N(0,02), 0% known. We have

1 < (M ,2 M — N|2
}C(PM>PN Z >.I J :H HF

2
mpllj1 20°mp

Usual assumption : M? is low-rank.
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Gaussian VB

Applications Matrix completion

Prior specification - main idea

Define :
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Prior specification - main idea

Define :
M= U V.
~ =
pxXm pxk kxm

Let U, ~ N(0,~/) denote the (-th column of M, we have :

k
M = Z UlVy)" = rank(M) < k.

(=1
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Applications Matrix completion

Prior specification - adaptation

@ R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML'08.
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Prior specification - adaptation

@ R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML'08.

k
M=> UuV)"

/=1

with k large - e.g. k = min(p, m).
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Prior specification - adaptation

@ R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML'08.

k
M=> UuV)"

/=1

with k large - e.g. k = min(p, m).

Definition of 7 :
o U.Vg, \/.75 ~ N(07 '\/E/),
@ 7, is itself random, such that most of the v, ~ 0

— ~ Gamma(a, b).
e

Pierre Alquier Concentration of variational approximations



Gaussian VB

Applications Matrix completion

Known results

@ T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality.
ICML.

(truncation of the support of 7 : remove large values of M; ;).
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Known results

@ T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality.
ICML.

(truncation of the support of 7 : remove large values of M; ;).

@ T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal
Rate under General Sampling Distribution. Electronic Journal of Statistics.

truncation of the support of 7 : remove large values of U; , and V; ;).
ik j k
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Known results

@ T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality.
ICML.

(truncation of the support of 7 : remove large values of M; ;).

@ T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal
Rate under General Sampling Distribution. Electronic Journal of Statistics.

(truncation of the support of 7 : remove large values of U; , and V; \).

In both cases, (in expectation or with large probability),

M — I\/IOH2 rank(/\/lo)max( p)log(...)
/ 202mp naldM) S n '
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Variational approximation

@ Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction.
Proceedings of KDD cup and workshop.

Mean-field approximation, F given by :

m P K
(AU, AV, dv) = X) pu,(AU:.) ) pv,(dV;.) ) o (30)-
i=1 j=1 k=1

Pierre Alquier Concentration of variational approximations
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Variational approximation

@ Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction.
Proceedings of KDD cup and workshop.

Mean-field approximation, F given by :
m P K
p(dU,dV, dv) = X pu,(AU;.) Q) pv,(dV].) ) o ().
i=1 j=1 k=1

It can be shown that

@ py, is N(m/, V),

@ oy, is N(n]. W),

Q py is T(a+ (m+ m2)/2, b)),
for some m x K matrix m whose rows are denoted by m; .,
some p X K matrix n and some vector 8 = (1, ..., Bk)-
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Applications Matrix completion

The VB algorithm

The parameters are updated iteratively through the formulae

o moments of U : 2

T ._ 2%, L ml
m = —Vi 3 Vi
Kiig=i

2 my + m
—1 T 1 2 a —1
V= — z [ij + njk-'njkw] + (a+ 2 )dlag(ﬁ)
" Kig=i
e moments of V : 2
I T
D = — D Vieie™..
kijy=j

2a my + m.

1 T 1 2\ . -1

wit= = k§. :_[v,-k +my mp ]+ (a+ T) diag(B)
k=i

e moments of v :
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Application of our theorem

Assume M = UV where
0= (0w...|0,.10]...10) and V = (Vi.|...|V,.[0]...]0)

and sup; , |U; x|, sup; x | Vix| < B. Take a > 0 as any constant
and b = b K- Then

512(nmp)*[(mVp

|l >1- =

<2(a+1) 2
- 1—-« nr,

P V De(Pu1, Pyo)n o (M)

2
where r, = C(a, 0, B)rmax(m, p) Iog(nmp).
n
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Matrix completion

Applications

Thank you'!

ation of variational approximations
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