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Notations
Assume that we observe X1, . . . , Xn i.i.d from Pθ0 in a model
{Pθ, θ ∈ Θ} dominated by Q : dPθ

dQ = pθ. Prior π on Θ.

The likelihood

Ln(θ) =
n∏

i=1

pθ(Xi)

The posterior

πn(dθ) ∝ Ln(θ)π(dθ).

The tempered posterior - 0 < α < 1

πn,α(dθ) ∝ [Ln(θ)]απ(dθ).
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Various reasons to use a tempered posterior

easier to sample from

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

robust to model misspecification

P. Grünwald and T. van Ommen (2017). Inconsistency of Bayesian Inference for Misspecified
Linear Models, and a Proposal for Repairing It. Bayesian Analysis.

theoretical analysis easier

A. Bhattacharya, D. Pati & Y. Yang (2016). Bayesian fractional posteriors. Preprint
arxiv :1611.01125.
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Bhattacharya, Pati & Yang’s approach (1/2)

The α-Rényi divergence for α ∈ (0, 1)

Dα(P ,R) =

{
1

α−1 log
∫ (dP

dR

)α−1 dP if P � R
+∞ otherwise.

All the properties derived in :

T. Van Erven & P. Harremos (2014). Rényi divergence and Kullback-Leibler divergence. IEEE
Transactions on Information Theory.

Among others, for 1/2 ≤ α, link with Hellinger and Kullback :

H2(P ,R) ≤ Dα(P ,R) −−→
α↗1

K(P ,R).
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Bhattacharya, Pati & Yang’s approach (2/2)

B(r) =

{
θ ∈ Θ : K(Pθ0 ,Pθ) ≤ r and Var

[
log

pθ(Xi)

pθ0(Xi)

]
≤ r .

}

Theorem (Bhattacharya, Pati & Yang)

For any sequence (rn) such that

− log π[B(rn)] ≤ nrn

we have

P
[∫

Dα(Pθ,Pθ0)πn,α(dθ) ≤ 2(1 + α)

1− α
rn

]
≥ 1− 2

nrn
.
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Computational issues

Popular methods to compute / sample from the (tempered)
posterior :

Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
optimization methods : variational Bayes (VB) and
expectation-propagation (EP).

Principle of VB : chose a family F of probability distributions
on Θ and approximate πn,α by a distribution in F :

π̃n,α := arg min
ρ∈F
K(ρ, πn,α).

Pierre Alquier Concentration of variational approximations



Introduction : tempered posteriors & variational approx.
Main results
Applications

Tempered posteriors
Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered)
posterior :

Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.

optimization methods : variational Bayes (VB) and
expectation-propagation (EP).

Principle of VB : chose a family F of probability distributions
on Θ and approximate πn,α by a distribution in F :

π̃n,α := arg min
ρ∈F
K(ρ, πn,α).

Pierre Alquier Concentration of variational approximations



Introduction : tempered posteriors & variational approx.
Main results
Applications

Tempered posteriors
Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered)
posterior :

Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
optimization methods : variational Bayes (VB) and
expectation-propagation (EP).

Principle of VB : chose a family F of probability distributions
on Θ and approximate πn,α by a distribution in F :

π̃n,α := arg min
ρ∈F
K(ρ, πn,α).

Pierre Alquier Concentration of variational approximations



Introduction : tempered posteriors & variational approx.
Main results
Applications

Tempered posteriors
Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered)
posterior :

Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
optimization methods : variational Bayes (VB) and
expectation-propagation (EP).

Principle of VB : chose a family F of probability distributions
on Θ and approximate πn,α by a distribution in F :

π̃n,α := arg min
ρ∈F
K(ρ, πn,α).

Pierre Alquier Concentration of variational approximations



Introduction : tempered posteriors & variational approx.
Main results
Applications

Tempered posteriors
Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered)
posterior :

Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
optimization methods : variational Bayes (VB) and
expectation-propagation (EP).

Principle of VB : chose a family F of probability distributions
on Θ and approximate πn,α by a distribution in F :

π̃n,α := arg min
ρ∈F
K(ρ, πn,α).

Pierre Alquier Concentration of variational approximations



Introduction : tempered posteriors & variational approx.
Main results
Applications

Tempered posteriors
Variational approximations

Variational approximations

π̃n,α = arg min
ρ∈F
K(ρ, πn,α)

= arg min
ρ∈F

{
−α
∫

1
n

n∑
i=1

log pθ(Xi)ρ(dθ) +K(ρ, π)

}
.

Examples :

parametric approximation

F =
{
N (µ,Σ) : µ ∈ Rd ,Σ ∈ S+

d

}
.

mean-field approximation, Θ = Θ1 ×Θ2 and

F : {ρ : ρ(dθ) = ρ1(dθ1)× ρ2(dθ2)} .
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Concentration of the tempered posterior
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The misspecified case

Extension of previous result to VB

Theorem
Assume that (rn) is such that there is a distribution ρn ∈ F
with∫
K(Pθ0 ,Pθ)ρn(dθ) ≤ rn,

∫
E
[

log2
(
pθ(Xi)

pθ0(Xi)

)]
ρn(dθ) ≤ rn

and
K(ρn, π) ≤ nrn.

Then, for any α ∈ (0, 1),

P
[∫

Dα(Pθ,Pθ0)π̃n,α(dθ) ≤ 2(α + 1)

1− α
rn

]
≥ 1− 2

nrn
.
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A simpler result in expectation

Theorem
If we only require that there is ρn ∈ F such that∫

K(Pθ0 ,Pθ)ρn(dθ) ≤ rn
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K(ρn, π) ≤ nrn,

then, for any α ∈ (0, 1),
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Misspecified case
Assume now that X1, . . . , Xn i.i.d from Q /∈ {Pθ, θ ∈ Θ}.
Put :

θ∗ := arg min
θ∈Θ
K(Q,Pθ).

Theorem
Assume that there is ρn ∈ F such that∫

E
[

log
dPθ∗
dPθ

]
ρn(dθ) ≤ rn and K(ρn, π) ≤ nrn,

then, for any α ∈ (0, 1),

E
[∫

Dα(Pθ,Q)π̃n,α(dθ)

]
≤ α

1− α
K(Q,Pθ∗) +

1 + α

1− α
rn.
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Gaussian VB

Let Θ = Rp.

We start with the family of approximations

FΦ
G :=

{
Φ(dθ;m,Σ), m ∈ Rd ,Σ ∈ G ⊂ Sd

+(R)
}
,

We assume that for a model {pθ, θ ∈ Θ} there exists a
measurable real valued function M(·) and p ∈ N? ∪ {1

2}

|log pθ(X1)− log pθ′(X1)| ≤ M(X1) ‖θ − θ′‖2p2

Furthermore we assume that
EM(X1) =: B1, EM2(X1) =: B2 <∞.
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Application of the result

Theorem

Let the family of approximation be F with FΦ
σ2I ⊂ F as

defined above. We put

rn =
B1

n
∨ B2

n2 ∨ C
d

n
log n

Then for any α ∈ (0, 1),

E
[∫

Dα(Pθ,Pθ0)π̃n,α(dθ|X n
1 )

]
≤ 1 + α

1− α
rn.
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Stochastic Variational Bayes

To implement the idea we write

FΦ
B =

{
Φ(dθ;m,CC t), (m,C ) ∈ B ∩ Rd × Sd

+

}
.

F : x = (m,C ) ∈ Rd ×Rd×d 7→ E [f (x , ξ)] = K(ρm,C , πn)

where ξ ∼ N (0, Id)

The optimization problem can be written

min
x∈B∩Rd×Sd+

E [f (x , ξ)] ,

where

f ((m,C ), ξ) := log pm+Cξ(Y
n
1 ) + log

dΦm,CC t

dπ
(m + Cξ)
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We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input : x0, X n
1 , γT

For i ∈ {1, · · · ,T},
a. Sample ξt ∼ N (0, Id)
b. Update

xt ← PB (xt−1 − γT∇f (xt−1, ξt))

End For .
Output : x̄T = 1

T

∑T
t=1 xt

where ∇f is the gradient of the integrand in the objective
function

Pierre Alquier Concentration of variational approximations
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Assume that f is convex in its first component x and that
it has L-Lipschitz gradients.
Define π̃k

n,α(dθ|X n
1 ) to be the k-th iterate of the algorithm

Theorem

For some C ,

rn =
B1

n
∨ B2

n2 ∨
{
d

n

[
1
2

log
(
ϑ2n2C

)
+

1
nϑ2

]
+
‖θ0‖2

nϑ2 −
d

2n

}
with γk = B

L
√

2k
, we get

E
[∫

Dα(Pθ,Pθ0)π̃k
n,α(dθ|X n

1 )

]
≤ 1 + α

1− α
rn +

1
n(1− α)

√
2BL
k
.
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Matrix completion : notations

The parameter θ is a matrix M0 ∈ Rm×p, with m, p ≥ 1.
Under PM , the observations are random entries of this matrix
with possible noise :

Yi = M0
ik ,jk

+ εk

where the (ik , jk) are i.i.d U({1, . . . ,m} × {1, . . . , p}). Assume
that the εk are i.i.d N (0, σ2), σ2 known. We have

K(PM ,PN) =
1
mp

m∑
i=1

p∑
j=1

(Mi ,j − Ni ,j)
2

2σ2 =
‖M − N‖2F
2σ2mp

.

Usual assumption : M0 is low-rank.

Pierre Alquier Concentration of variational approximations
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Prior specification - main idea

Define :

M︸︷︷︸
p×m

= U︸︷︷︸
p×k

V T︸︷︷︸
k×m

.

Let U·,` ∼ N (0, γI ) denote the `-th column of M , we have :

M =
k∑
`=1

U·,`(V·,`)
T ⇒ rank(M) ≤ k .

Pierre Alquier Concentration of variational approximations
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Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML’08.

M =
k∑
`=1

U·,`(V·,`)
T

with k large - e.g. k = min(p,m).

Definition of π :
U·,`,V·,` ∼ N (0, γ`I ),
γ` is itself random, such that most of the γ` ' 0

1
γ`
∼ Gamma(a, b).
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Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality.
ICML.

(truncation of the support of π : remove large values of Mi,j ).

T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal
Rate under General Sampling Distribution. Electronic Journal of Statistics.

(truncation of the support of π : remove large values of Ui,k and Vj,k ).

In both cases, (in expectation or with large probability),∫
‖M −M0‖2F

2σ2mp
π̂n,α(dM) .

rank(M0) max(m, p) log(. . . )

n
.
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T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal
Rate under General Sampling Distribution. Electronic Journal of Statistics.

(truncation of the support of π : remove large values of Ui,k and Vj,k ).

In both cases, (in expectation or with large probability),∫
‖M −M0‖2F

2σ2mp
π̂n,α(dM) .

rank(M0) max(m, p) log(. . . )

n
.
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Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction.
Proceedings of KDD cup and workshop.

Mean-field approximation, F given by :

ρ(dU , dV , dγ) =
m⊗
i=1

ρUi
(dUi ,·)

p⊗
j=1

ρVj
(dVj ,·)

K⊗
k=1

ργk (γk).

It can be shown that
1 ρUi

is N (mT
i ,·,Vi),

2 ρVj
is N (nT

j ,·,Wj),
3 ργk is Γ(a + (m1 + m2)/2, βk),

for some m × K matrix m whose rows are denoted by mi ,·,
some p × K matrix n and some vector β = (β1, . . . , βK ).
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The VB algorithm

The parameters are updated iteratively through the formulae
1 moments of U :

mT
i,· :=

2α

n
Vi

∑
k:ik=i

Yik ,jk
nTjk ,·

V−1
i :=

2α

n

∑
k:ik=i

[
Wjk

+ njk ,·n
T
jk ,·

]
+

(
a +

m1 + m2

2

)
diag(β)−1

2 moments of V :

nTj,· :=
2α

n
Wj

∑
k:jk=j

Yik ,jk
mT

ik ,·

W−1
j :=

2α

n

∑
k:jk=j

[
Vik + mik ,·m

T
ik ,·

]
+

(
a +

m1 + m2

2

)
diag(β)−1

3 moments of γ :

βk :=
1

2

m1∑
i=1

(
m2

i,k + (Vi )k,k
)

+

m2∑
j=1

(
n2j,k + (Vj )k,k

) .
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Application of our theorem

Theorem

Assume M = ŪV̄ T where

Ū = (Ū1,·| . . . |Ūr ,·|0| . . . |0) and V̄ = (V̄1,·| . . . |V̄r ,·|0| . . . |0)

and supi ,k |Ui ,k |, supj ,k |Vj ,k | ≤ B . Take a > 0 as any constant
and b = B2

512(nmp)4[(m∨p)K ]2
. Then

P
[∫

Dα(PM ,PM0)π̃n,α(dM) ≤ 2(α + 1)

1− α
rn

]
≥ 1− 2

nrn

where rn =
C(a, σ2,B)r max(m, p) log(nmp)

n
.
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Thank you !
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