Concentration of tempered posteriors and of their variational approximations

Pierre Alquier

Workshop "Approximating high dimensional functions" Dec. 19, 2017

Pierre Alquier Concentration of variational approximations

Talk based on the preprint :

P. Alquier & J. Ridgway (2017). Concentration of tempered posteriors and of their variational approximations. *Preprint arxiv* :1706.09293.

Outline of the talk

Introduction : tempered posteriors & variational approx.

- Tempered posteriors
- Variational approximations

2 Main results

- Concentration of the tempered posterior
- A result in expectation
- The misspecified case

3 Applications

- Gaussian VB
- Matrix completion

Tempered posteriors Variational approximations

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

Tempered posteriors Variational approximations

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(heta) = \prod_{i=1}^n p_{ heta}(X_i)$$

Tempered posteriors Variational approximations

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(heta) = \prod_{i=1}^n p_{ heta}(X_i)$$

The posterior

 $\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$

Tempered posteriors Variational approximations

Notations

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(\theta) = \prod_{i=1}^n p_{\theta}(X_i)$$

The posterior

 $\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$

The tempered posterior - 0 < α < 1

 $\pi_{n,\alpha}(\mathrm{d}\theta) \propto [L_n(\theta)]^{\alpha} \pi(\mathrm{d}\theta).$

Pierre Alquier Concentration of variational approximations

Tempered posteriors Variational approximations

Various reasons to use a tempered posterior

• easier to sample from

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

Tempered posteriors Variational approximations

Various reasons to use a tempered posterior

easier to sample from

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

robust to model misspecification

P. Grünwald and T. van Ommen (2017). Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It. *Bayesian Analysis*.

Tempered posteriors Variational approximations

Various reasons to use a tempered posterior

easier to sample from

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

robust to model misspecification

P. Grünwald and T. van Ommen (2017). Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It. *Bayesian Analysis*.

theoretical analysis easier

A. Bhattacharya, D. Pati & Y. Yang (2016). Bayesian fractional posteriors. *Preprint arxiv* :1611.01125.

Tempered posteriors Variational approximations

Bhattacharya, Pati & Yang's approach (1/2)

The α -Rényi divergence for $\alpha \in (0, 1)$

$$D_{\alpha}(P,R) = \begin{cases} \frac{1}{\alpha-1} \log \int \left(\frac{\mathrm{d}P}{\mathrm{d}R}\right)^{\alpha-1} \mathrm{d}P \text{ if } P \ll R \\ +\infty \text{ otherwise.} \end{cases}$$

Tempered posteriors Variational approximations

Bhattacharya, Pati & Yang's approach (1/2)

The α -Rényi divergence for $\alpha \in (0, 1)$

$$D_{\alpha}(P,R) = \begin{cases} \frac{1}{\alpha-1} \log \int \left(\frac{\mathrm{d}P}{\mathrm{d}R}\right)^{\alpha-1} \mathrm{d}P \text{ if } P \ll R \\ +\infty \text{ otherwise.} \end{cases}$$

All the properties derived in :

T. Van Erven & P. Harremos (2014). Rényi divergence and Kullback-Leibler divergence. *IEEE Transactions on Information Theory*.

Among others, for $1/2 \leq \alpha,$ link with Hellinger and Kullback :

$$\mathcal{H}^2(P,R) \leq D_{lpha}(P,R) \xrightarrow[\alpha
earrow 1]{} \mathcal{K}(P,R).$$

Tempered posteriors Variational approximations

Bhattacharya, Pati & Yang's approach (2/2)

$$\mathcal{B}(r) = \left\{ \theta \in \Theta : \mathcal{K}(P_{\theta_0}, P_{\theta}) \leq r \text{ and } \operatorname{Var}\left[\log \frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)} \right] \leq r. \right\}$$

Theorem (Bhattacharya, Pati & Yang)

For any sequence (r_n) such that

$$-\log \pi[B(r_n)] \leq nr_n$$

we have

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0})\pi_{n,\alpha}(\mathrm{d}\theta) \leq \frac{2(1+\alpha)}{1-\alpha}r_n\right] \geq 1-\frac{2}{nr_n}.$$

Tempered posteriors Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

Tempered posteriors Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

 Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.

Tempered posteriors Variational approximations

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods : variational Bayes (VB) and expectation-propagation (EP).

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods : variational Bayes (VB) and expectation-propagation (EP).

Principle of VB : chose a family \mathcal{F} of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in \mathcal{F} :

Computational issues

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods : variational Bayes (VB) and expectation-propagation (EP).

Principle of VB : chose a family \mathcal{F} of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in \mathcal{F} :

$$\tilde{\pi}_{\mathbf{n},\alpha} := \arg\min_{\rho\in\mathcal{F}}\mathcal{K}(\rho,\pi_{\mathbf{n},\alpha}).$$

Tempered posteriors Variational approximations

Variational approximations

$$\begin{split} \tilde{\pi}_{n,\alpha} &= \arg\min_{\rho\in\mathcal{F}}\mathcal{K}(\rho,\pi_{n,\alpha}) \\ &= \arg\min_{\rho\in\mathcal{F}}\left\{-\alpha\int\frac{1}{n}\sum_{i=1}^{n}\log p_{\theta}(X_{i})\rho(\mathrm{d}\theta) + \mathcal{K}(\rho,\pi)\right\}. \end{split}$$

Examples :

Tempered posteriors Variational approximations

Variational approximations

$$\begin{split} \tilde{\pi}_{n,\alpha} &= \arg\min_{\rho\in\mathcal{F}}\mathcal{K}(\rho,\pi_{n,\alpha}) \\ &= \arg\min_{\rho\in\mathcal{F}}\left\{-\alpha\int\frac{1}{n}\sum_{i=1}^{n}\log p_{\theta}(X_{i})\rho(\mathrm{d}\theta) + \mathcal{K}(\rho,\pi)\right\}. \end{split}$$

Examples :

parametric approximation

$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+
ight\}.$$

Tempered posteriors Variational approximations

Variational approximations

$$\begin{split} \tilde{\pi}_{n,\alpha} &= \arg\min_{\rho\in\mathcal{F}}\mathcal{K}(\rho,\pi_{n,\alpha}) \\ &= \arg\min_{\rho\in\mathcal{F}}\left\{-\alpha\int\frac{1}{n}\sum_{i=1}^{n}\log p_{\theta}(X_{i})\rho(\mathrm{d}\theta) + \mathcal{K}(\rho,\pi)\right\}. \end{split}$$

Examples :

• parametric approximation

$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+
ight\}.$$

 $\bullet\,$ mean-field approximation, $\Theta=\Theta_1\times\Theta_2$ and

$$\mathcal{F}: \{\rho: \rho(\mathrm{d}\theta) = \rho_1(\mathrm{d}\theta_1) \times \rho_2(\mathrm{d}\theta_2)\}.$$

Concentration of the tempered posterior A result in expectation The misspecified case

Extension of previous result to VB

Theorem

Assume that (r_n) is such that there is a distribution $\rho_n \in \mathcal{F}$ with

$$\int \mathcal{K}(P_{\theta_0}, P_{\theta})\rho_n(\mathrm{d}\theta) \leq r_n, \ \int \mathbb{E}\left[\log^2\left(\frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)}\right)\right]\rho_n(\mathrm{d}\theta) \leq r_n$$

and

$$\mathcal{K}(\rho_n,\pi) \leq nr_n.$$

Then, for any $\alpha \in (0,1)$,

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta) \leq \frac{2(\alpha+1)}{1-\alpha}r_n\right] \geq 1-\frac{2}{nr_n}.$$

Concentration of the tempered posterior A result in expectation The misspecified case

A simpler result in expectation

Theorem

If we only require that there is $\rho_n \in \mathcal{F}$ such that

$$\int \mathcal{K}(P_{\theta_0}, P_{\theta})\rho_n(\mathrm{d}\theta) \leq r_n$$

and

$$\mathcal{K}(\rho_n, \pi) \leq nr_n,$$

then, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{1+\alpha}{1-\alpha}r_n.$$

Introduction : tempered posteriors & variational approx. Main results Applications Applications Main result in expectation The misspecified case

Misspecified case

Assume now that X_1, \ldots, X_n i.i.d from $Q \notin \{P_{\theta}, \theta \in \Theta\}$. Put :

$$\theta^* := \arg\min_{\theta\in\Theta} \mathcal{K}(Q, P_{\theta}).$$

Theorem

Assume that there is $\rho_n \in \mathcal{F}$ such that

$$\int \mathbb{E}\left[\log \frac{\mathrm{d}P_{\theta^*}}{\mathrm{d}P_{\theta}}\right] \rho_n(\mathrm{d}\theta) \leq r_n \text{ and } \mathcal{K}(\rho_n, \pi) \leq nr_n,$$

then, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta},Q)\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{\alpha}{1-\alpha}\mathcal{K}(Q,P_{\theta^*}) + \frac{1+\alpha}{1-\alpha}r_n.$$

Introduction : tempered posteriors & variational approx.

- Tempered posteriors
- Variational approximations

- Concentration of the tempered posterior
- A result in expectation
- The misspecified case

3 Applications

- Gaussian VB
- Matrix completion

Gaussian VB Matrix completion

Gaussian VB

• Let
$$\Theta = \mathbb{R}^{p}$$
.

Pierre Alquier Concentration of variational approximations

Gaussian VB Matrix completion

Gaussian VB

- Let $\Theta = \mathbb{R}^{p}$.
- We start with the family of approximations

$$\mathcal{F}_{\mathcal{G}}^{\Phi} := \left\{ \Phi(d heta; m, \Sigma), \quad m \in \mathbb{R}^{d}, \Sigma \in \mathcal{G} \subset \mathcal{S}^{d}_{+}(\mathbb{R})
ight\},$$

Gaussian VB Matrix completion

Gaussian VB

- Let $\Theta = \mathbb{R}^{p}$.
- We start with the family of approximations

$$\mathcal{F}_{\mathcal{G}}^{\Phi} := \left\{ \Phi(d heta; m, \Sigma), \quad m \in \mathbb{R}^{d}, \Sigma \in \mathcal{G} \subset \mathcal{S}^{d}_{+}(\mathbb{R})
ight\},$$

We assume that for a model {p_θ, θ ∈ Θ} there exists a measurable real valued function M(·) and p ∈ N^{*} ∪ {¹/₂}

$$\left|\log p_{ heta}(X_1) - \log p_{ heta'}(X_1)
ight| \leq M(X_1) \left\| heta - heta'
ight\|_2^{2p}$$

Furthermore we assume that $\mathbb{E}M(X_1) =: B_1, \quad \mathbb{E}M^2(X_1) =: B_2 < \infty.$

Gaussian VB Matrix completion

Application of the result

Theorem

Let the family of approximation be \mathcal{F} with $\mathcal{F}^{\Phi}_{\sigma^2 I} \subset \mathcal{F}$ as defined above. We put

$$r_n = \frac{B_1}{n} \vee \frac{B_2}{n^2} \vee C\frac{d}{n} \log n$$

Then for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta|X_{1}^{n})\right] \leq \frac{1+\alpha}{1-\alpha}r_{n}.$$

Gaussian VB Matrix completion

Stochastic Variational Bayes

• To implement the idea we write

 $\mathcal{F}_{B}^{\Phi} = \left\{ \Phi(d\theta; m, CC^{t}), \quad (m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d} \right\}.$ $F : x = (m, C) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}\left[f(x, \xi)\right] = \mathcal{K}(\rho_{m, C}, \pi_{n})$ where $\xi \sim \mathcal{N}(0, I_{d})$

Gaussian VB Matrix completion

Stochastic Variational Bayes

• To implement the idea we write

$$\mathcal{F}_{B}^{\Phi} = \left\{ \Phi(d\theta; m, CC^{t}), \quad (m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d} \right\}.$$

$$F : x = (m, C) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}\left[f(x, \xi)\right] = \mathcal{K}(\rho_{m, C}, \pi_{n})$$

where $\xi \sim \mathcal{N}(0, I_{d})$

• The optimization problem can be written

$$\min_{x\in\mathbb{B}\cap\mathbb{R}^d\times\mathcal{S}^d_+}\mathbb{E}\left[f(x,\xi)\right],$$

where

$$f((m, C), \xi) := \log p_{m+C\xi}(Y_1^n) + \log \frac{\mathrm{d}\Phi_{m,CC^t}}{\mathrm{d}\pi}(m+C\xi)$$

We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input :
$$x_0$$
, X_1^n , γ_T
For $i \in \{1, \dots, T\}$,
a. Sample $\xi_t \sim \mathcal{N}(0, I_d)$
b. Update
 $x_t \leftarrow \mathcal{P}_{\mathbb{B}} (x_{t-1} - \gamma_T \nabla f(x_{t-1}, \xi_t))$
End For .
Output : $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$

where ∇f is the gradient of the integrand in the objective function

Gaussian VB Matrix completion

- Assume that f is convex in its first component x and that it has L-Lipschitz gradients.
- Define $\tilde{\pi}_{n,\alpha}^k(\mathrm{d} heta|X_1^n)$ to be the *k*-th iterate of the algorithm

Theorem

For some C. $r_n = \frac{B_1}{n} \vee \frac{B_2}{n^2} \vee \left\{ \frac{d}{n} \left| \frac{1}{2} \log \left(\vartheta^2 n^2 C \right) + \frac{1}{n \vartheta^2} \right| + \frac{\|\theta_0\|^2}{n \vartheta^2} - \frac{d}{2n} \right\}$ with $\gamma_k = \frac{B}{L\sqrt{2k}}$, we get $\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0})\tilde{\pi}_{n,\alpha}^k(\mathrm{d}\theta|X_1^n)\right] \leq \frac{1+\alpha}{1-\alpha}r_n + \frac{1}{n(1-\alpha)}\sqrt{\frac{2BL}{k}}.$

Gaussian VB Matrix completion

Matrix completion : notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$. Assume that the ε_k are i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known. We have

$$\mathcal{K}(P_M, P_N) = \frac{1}{mp} \sum_{i=1}^m \sum_{j=1}^p \frac{(M_{i,j} - N_{i,j})^2}{2\sigma^2} = \frac{\|M - N\|_F^2}{2\sigma^2 mp}.$$

Gaussian VB Matrix completion

Matrix completion : notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$. Assume that the ε_k are i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known. We have

$$\mathcal{K}(P_M, P_N) = rac{1}{mp} \sum_{i=1}^m \sum_{j=1}^p rac{(M_{i,j} - N_{i,j})^2}{2\sigma^2} = rac{\|M - N\|_F^2}{2\sigma^2 mp}.$$

Usual assumption : M^0 is low-rank.

Gaussian VB Matrix completion

Prior specification - main idea

Define :

 $\underbrace{M}_{p\times m} = \underbrace{U}_{p\times k} \underbrace{V^{T}}_{k\times m}.$

Gaussian VB Matrix completion

Prior specification - main idea

Define :

Let $U_{\cdot,\ell} \sim \mathcal{N}(0,\gamma I)$ denote the ℓ -th column of M, we have :

$$M = \sum_{\ell=1}^{k} U_{\cdot,\ell} (V_{\cdot,\ell})^{T} \quad \Rightarrow \quad \operatorname{rank}(M) \leq k.$$

Gaussian VB Matrix completion

Prior specification - adaptation

L
L

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. *Proceedings of ICML'08.*

Gaussian VB Matrix completion

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. *Proceedings of ICML'08.*

$$M = \sum_{\ell=1}^{k} U_{\cdot,\ell} (V_{\cdot,\ell})^{T}$$

with k large - e.g. $k = \min(p, m)$.

Gaussian VB Matrix completion

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. *Proceedings of ICML'08.*

$$M = \sum_{\ell=1}^k U_{\cdot,\ell} (V_{\cdot,\ell})^{ au}$$

with k large - e.g. $k = \min(p, m)$.

Definition of π :

- $U_{\cdot,\ell}, V_{\cdot,\ell} \sim \mathcal{N}(0, \gamma_{\ell}I)$,
- γ_ℓ is itself random, such that most of the $\gamma_\ell\simeq 0$

$$\frac{1}{\gamma_{\ell}} \sim \operatorname{Gamma}(a, b).$$

Gaussian VB Matrix completion

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. ICML.

(truncation of the support of π : remove large values of $M_{i,i}$).

Gaussian VB Matrix completion

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. ICML.

(truncation of the support of π : remove large values of $M_{i,j}$).

T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal Rate under General Sampling Distribution. *Electronic Journal of Statistics*.

(truncation of the support of π : remove large values of $U_{i,k}$ and $V_{i,k}$).

Gaussian VB Matrix completion

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. *ICML*.

(truncation of the support of π : remove large values of $M_{i,j}$).

T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal Rate under General Sampling Distribution. *Electronic Journal of Statistics*.

(truncation of the support of π : remove large values of $U_{i,k}$ and $V_{j,k}$).

In both cases, (in expectation or with large probability),

$$\int \frac{\|M - M^0\|_F^2}{2\sigma^2 m p} \hat{\pi}_{n,\alpha}(\mathrm{d}M) \lesssim \frac{\mathrm{rank}(M^0)\max(m,p)\log(\dots)}{n}.$$

Gaussian VB Matrix completion

Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. *Proceedings of KDD cup and workshop.*

Mean-field approximation, \mathcal{F} given by :

$$\rho(\mathrm{d} U, \mathrm{d} V, \mathrm{d} \gamma) = \bigotimes_{i=1}^{m} \rho_{U_i}(\mathrm{d} U_{i,\cdot}) \bigotimes_{j=1}^{p} \rho_{V_j}(\mathrm{d} V_{j,\cdot}) \bigotimes_{k=1}^{K} \rho_{\gamma_k}(\gamma_k).$$

Gaussian VB Matrix completion

Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. *Proceedings of KDD cup and workshop.*

Mean-field approximation, ${\mathcal F}$ given by :

$$\rho(\mathrm{d} U, \mathrm{d} V, \mathrm{d} \gamma) = \bigotimes_{i=1}^{m} \rho_{U_i}(\mathrm{d} U_{i,\cdot}) \bigotimes_{j=1}^{p} \rho_{V_j}(\mathrm{d} V_{j,\cdot}) \bigotimes_{k=1}^{K} \rho_{\gamma_k}(\gamma_k).$$

It can be shown that

- 1 ρ_{U_i} is $\mathcal{N}(\mathbf{m}_{i,\cdot}^T, \mathcal{V}_i)$, 2 ρ_{V_i} is $\mathcal{N}(\mathbf{n}_{i,\cdot}^T, \mathcal{W}_i)$,
- ρ_{γ_k} is $\Gamma(a + (m_1 + m_2)/2, \beta_k)$,

for some $m \times K$ matrix **m** whose rows are denoted by $\mathbf{m}_{i,\cdot}$, some $p \times K$ matrix **n** and some vector $\beta = (\beta_1, \ldots, \beta_K)$.

Gaussian VB Matrix completion

The VB algorithm

The parameters are updated iteratively through the formulae

$$\mathbf{m}_{i,\cdot}^{\mathsf{T}} := \frac{2\alpha}{n} \mathcal{V}_i \sum_{k:i_k=i} Y_{i_k,j_k} \mathbf{n}_{j_k,\cdot}^{\mathsf{T}}$$

$$\mathcal{V}_i^{-1} := \frac{2\alpha}{n} \sum_{k: i_k = i} \left[\mathcal{W}_{j_k} + \mathbf{n}_{j_k,\cdot} \mathbf{n}_{j_k,\cdot}^T \right] + \left(\mathbf{a} + \frac{m_1 + m_2}{2} \right) \mathrm{diag}(\beta)^{-1}$$

moments of V :

$$\mathbf{n}_{j,\cdot}^{\mathsf{T}} := \frac{2\alpha}{n} \mathcal{W}_j \sum_{k:j_k=j} Y_{i_k,j_k} \mathbf{m}_{i_k,\cdot}^{\mathsf{T}}$$

$$\mathcal{W}_j^{-1} \coloneqq \frac{2\alpha}{n} \sum_{k: j_k = j} \left[\mathcal{V}_{i_k} + \mathbf{m}_{i_k, \cdot} \mathbf{m}_{i_k, \cdot}^T \right] + \left(\mathbf{a} + \frac{m_1 + m_2}{2} \right) \mathrm{diag}(\beta)^{-1}$$

3 moments of γ :

$$\beta_k := \frac{1}{2} \left[\sum_{i=1}^{m_1} \left(\mathbf{m}_{i,k}^2 + (\mathcal{V}_i)_{k,k} \right) + \sum_{j=1}^{m_2} \left(\mathbf{n}_{j,k}^2 + (\mathcal{V}_j)_{k,k} \right) \right].$$

Gaussian VB Matrix completion

Application of our theorem

Theorem

Assume $M = \bar{U}\bar{V}^{T}$ where

$$ar{U} = (ar{U}_{1,\cdot}|\dots|ar{U}_{r,\cdot}|0|\dots|0)$$
 and $ar{V} = (ar{V}_{1,\cdot}|\dots|ar{V}_{r,\cdot}|0|\dots|0)$

and $\sup_{i,k} |U_{i,k}|, \sup_{j,k} |V_{j,k}| \le B$. Take a > 0 as any constant and $b = \frac{B^2}{512(nmp)^4[(m \lor p)K]^2}$. Then

$$\mathbb{P}\left[\int D_{\alpha}(P_{M}, P_{M^{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}M) \leq \frac{2(\alpha+1)}{1-\alpha}r_{n}\right] \geq 1-\frac{2}{nr_{n}}$$

where
$$r_n = \frac{\mathcal{C}(a, \sigma^2, B)r \max(m, p) \log(nmp)}{n}$$
.

Thank you!