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Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Ps,0 € ©} dominated by Q : ?1_’:;? = py. Prior m on ©.
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The posterior

7a(d0) o Lo(6)7(d6).
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Introduction : variational Bayesian inference Bayesian inference
Definition of variational approximations
Outline of the talk

Notations

Assume that we observe X, ..., X, i.i.d from Py, in a model
{Py,0 € ©} dominated by Q : C(li—'zg = py. Prior 7 on ©.

mn(d0) o< L,(8)m(d0).
The tempered posterior - 0 < a < 1

Tna(dl) o< [Ly(0)]“7(d0).

A\
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Computation of the posterior

@ explicit form (conjugate models),
o MCMC algorithms : Metropolis-Hastings, Gibbs sampler,
Langevin Monte Carlo...
But...

@ when the dimension is large, the convergence of MCMC
can be extremely slow,

@ when the model is complex or when the sample size is
large, each evaluation of 7, ,(6) can be expensive.

For these reasons, in the past 20 years, many methods
targeting an approximation of 7, , became popular : ABC, EP
algorithm, variational inference, approximate MCMC ...
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@ parametric approximation
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Variational approximations : definitions

Idea of VB : chose a family F of probability distributions on ©
and approximate 7, by a distribution in F :

Tno = argmin KC(p, Tn.q). ’
pEF

Examples :
@ parametric approximation

F={N(pX):peR)LeS}.

@ mean-field approximation, © = ©; x ©, and

F {p: p(df) = p1(db1) x p2(do2)}.
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Empirical lower bound (ELBO)

Note that :

Tna = argmin K(p, Tp o)
pEF

pEF

= argmin —a/ Z|ng9 )p(df) + K(p, )

_ELBO(p)
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Empirical lower bound (ELBO)

Note that :

Tna = argmin K(p, Tp o)
pEF

= arg g;l]r.] { / Z log PH d@) + ]C(p, )} .

_ELBO(p)

So we have the equivalent definition :

o ELBO(p).
arg max (p) ’
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After this introduction :

Section 2 will address the following question :

What are the conditions ensuring that 7, leads to good
estimators ?
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Outline of the talk

After this introduction :

Section 2 will address the following question :

What are the conditions ensuring that 7, leads to good
estimators ?

We will show general conditions, and many examples.

Section 3 will address the following question :

Are there efficient algorithms to (provably) compute 7, , ?

We will see that fast algorithms from sequential optimization
can be used in some cases. This also allows to do variational
inference on a data stream that cannot be stored.
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€@ Introduction : variational Bayesian inference
@ Bayesian inference
@ Definition of variational approximations
@ Outline of the talk

@ Concentration of variational approximations of the posterior
@ Theoretical results
@ Applications
@ Extensions

9 Online variational inference
@ Sequential estimation problem
@ Online variational inference
@ Simulations
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Concentration of variational approximations of the posterior Applications
Extensions

Tools for the consistency of VB

The a-Rényi divergence for a € (0, 1)

L log / (dP)*(dR).

D.(P,R) =
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Tools for the consistency of VB

The a-Rényi divergence for a € (0, 1)

L log / (dP)*(dR).

D.(P,R) =

All the properties derived in :

@ T. Van Erven & P. Harremos. Rényi divergence and Kullback-Leibler divergence. IEEE

Transactions on Information Theory, 2014.

Among others, for 1/2 < «, link with Hellinger and Kullback :

HZ(P7 R) < Da(PJ R) 7 IC(Pv R)
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Theoretical results
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What do we know about 7, 7

B(r)y={0 € ©:K(Py,, Ps) <r}.

Theorem, variant of (Bhattacharya, Pati & Yang

For any sequence (r,) such that
—log w[B(r,)] < nr,

we have

1+«

I

—

Q

E {/ Do(Py, Pgy)mna(df)| <

@ A. Bhattacharya, D. Pati & Y. Yang. Bayesian fractional posteriors. The Annals of Statistics,
2019.
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Extension of previous result to VB

Theorem (A. & Ridgway)
If there is p, € F and (r,) such that

f’C(PQm Pa)ﬂn(de) S I'n,
and
K(pn, ) < nry,

then, for any o € (0,1),

.

1
E U Do(Py, Pay)na(d)| < 1J_FZ
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Extension of previous result to VB

Theorem (A. & Ridgway)
If there is p, € F and (r,) such that
f’C(PGm Po)pn(df) < rn,

and
K(pn, ) < nry,

then, for any o € (0,1),

5 1+«
E DQ(PQ,PQO)W,LQ(dQ) S rp.
11—«
@ P. Alquier & J. Ridgway. Concentration of tempered posteriors and of their variational
approximations. The Annals of Statistics, to appear.
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Misspecified case
Assume now that Xi, ..., X, i.i.d ~ Q & {Py,0 € ©}. Put :
0" = arg min K(Q, Py).

Theorem (A. and Ridgway)
Assume that there is p, € F such that

/E [Iog (;F;fe] pn(df) < r, and K(pn, 7) < nry,

then, for any « € (0,1),

1+«
11—«

I

E [/ Da(Pg,Q)frw(dQ)] < %K(Q,Pg*)—i—
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First example : nonparametric regression

Nonparametric regression

o Y, =f(X)+&,
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First example : nonparametric regression

Nonparametric regression

o Y, = f(Xi)+¢&,
° ¢ NN(0702)v
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First example : nonparametric regression

Nonparametric regression

o Y, = f(Xi)+¢&,
° ¢ NN(0702)v

@ f is s-smooth with s unknown,
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First example : nonparametric regression

Nonparametric regression

o Y:i="1f(X)+¢&,
° gi ~ N(0702)v
@ f is s-smooth with s unknown,

@ prior : () = Zszl Bi¢;(), random K and 3;'s, (¢))
basis...
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First example : nonparametric regression

Nonparametric regression

o Y:i="1f(X)+¢&,
° gi ~ N(0702)v
@ f is s-smooth with s unknown,

@ prior : () = ZJK:l Bi®;(+), random K and f;'s, (;)

basis...

@ variational approx : ; mutually independent...

2s

Under suitable assumptions, r, ~ ('Ogrsn)) =
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More examples covered in the paper

© logistic regression,
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More examples covered in the paper

© logistic regression,
© matrix completion : we prove that the approx. in

@ Y. J. Lim & Y. W. Teh. Variational Bayesian approach to movie rating prediction. Proceedings of
KDD cup and workshop, 2007.

leads to minimax-optimal estimation.
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An important example : mixture models

Mixture models

K
© Py = Popr...on = D_j—1Pj%;
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An important example : mixture models

Mixture models

K
@ Py = Ppo, o =2 =1 Pid0;
@ priorm: p=(p1,...,Px) ~ Tp =D(a,...,ak) and the
6;'s are independent from 7.
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An important example : mixture models

Mixture models

K
@ Py = Ppo, o =2 =1 Pid0;
@ priorm: p=(p1,...,Px) ~ Tp =D(a,...,ak) and the
6;'s are independent from 7.

Tempered posterior :

La(6)"(0) o (Hzqu@.(x,-)) malp) [[ 70(6))

i=1 j=1
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An important example : mixture models

Mixture models

K
@ Py = Ppo, o =2 =1 Pid0;
@ priorm: p=(p1,...,Px) ~ Tp =D(a,...,ak) and the
6;'s are independent from 7.

Tempered posterior :

La(6)"(0) o (Hzqu@.(x,-)) malp) [[ 70(6)

i=1 j=1

Variational approximation :

7Tna P, —pp Hpj
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ELBO maximization for mixtures

n K
min { — OzZ/Iog (Z quej(X;))p(dH)
i=1 =il

P:(PwPl 7777 PK)

K

+ ’C(ppvﬂp) + Z’C(Pjﬂrj)}

Jj=1

—log (équgj(x,-o = min { - z’;w}' log(p;as;(Xi))

wiGSK
K
+ Z w; Iog(wj’-)}
j=1
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Coordinate Descent algorithm

Algorithm 1 Coordinate Descent Variational Bayes for mixtures

: Input: a dataset (X1, ..., X,,), priors 7, {7; }j(:l and a family {gg/0 € O}
: Output: a variational approximation py(p) H;Kzl p;(0;)

: Initialize variational factors p,, {p;}1_,

- until convergence of the objective function do

:fori=1,...,ndo
forj=1,..,.K do

7 set w; = exp (f log(p;)pp(dp) + flog(qu(Xl))pj(dﬂ]))
8: end for
9: normalize (uv >1<J<K
10: end for X
11: set py(dp) o exp (r,r > > wh log(pj))ﬁp((]p)

i=1j=1
12: for j=1,...,K do

n

13: set pj(df;) o< exp <{1 > uﬁ log(ge; (X ))) mj(dby)

i=1

=

14: end for

Pierre Alqui Generalization bounds for variational inference



Concentration of variational approximations of the posterior

Theoretica

Extensions

| results

Applications

Numerical example on Gaussian mixtures

Gaussian mixture 2?21 piN(6;,1) and Gaussian prior on 6;.
Sample size n = 1000, we report the MAE over 10 replications.

A|g0 P 91 92 93

VB.—os | 0.03 (0.02) | 0.14 (0.30) | 0.38 (1.11) | 0.05 (0.05)
VB,_; | 0.03 (0.02) | 0.14 (0.21) | 0.36 (0.97) | 0.06 (0.04)
EM | 0.03(0.02) | 0.14 (0.22) | 0.36 (0.97) | 0.06 (0.05)

Pierre Alquier

Generalization bounds for variational inference
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Extensions

Mixture models : convergence rates

Theorem (Chérief-Abdellatif, A.)

Chose 2 < a; <1 and assume that
estimation in (gg) (without mixture) at
rate r,.
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Mixture models : convergence rates

Theorem (Chérief-Abdellatif, A.)

Chose 2 < a; <1 and assume that

estimation in (gg) (without mixture) at
rate r,. Then

E [ [ 0ulPoscan Ppo,eg,...,wn,a(de)]

< 1+«
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Mixture models : convergence rates

Theorem (Chérief-Abdellati

Chose 2 < a; <1 and assume that
estimation in (gg) (without mixture) at
rate r,. Then

E [ [ 0ulPoscan Ppo,eg,...,wn,a(de)]

@ B.-E. Chérief-Abdellatif, P. Alquier. Consistency of

Variational Bayes Inference for Estimation and Model
Selection in Mixtures. Electronic Journal of Statistics, 2018.
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Model selection

@ D. Blei, A. Kucukelbir & J. McAuliffe. Variational inference : A review for statisticians. JASA,
2017.
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Model selection

@ D. Blei, A. Kucukelbir & J. McAuliffe. Variational inference : A review for statisticians. JASA,
2017.

The relationship between the ELBO and log p(x) has led to
using the variational bound as a model selection criterion. This
has been explored for mixture models (Ueda and Ghahramani
2002; McGrory and Titterington 2007) and more generally
(Beal and Ghahramani 2003). The premise is that the bound is a
good approximation of the marginal likelihood, which provides

a basis for selecting a model. Though this sometimes works in
practice, selecting based on a bound is not justified in theory.
Other research has used variational approximations in the log
predictive density to use VI in cross-validation-based model
selection (Nott et al. 2012).
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Model selection

Assume that we have K models, define 7%  a variational
approximation of the tempered posterior in model k, and rk its
convergence rate if model k is correct. Put :

k = arg max ELBO(75 ,)-
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Model selection

Assume that we have K models, define 7%  a variational
approximation of the tempered posterior in model k, and rk its
convergence rate if model k is correct. Put :

~

k = arg max ELBO(75 ,)-

Theorem (Chérief-Abdellatif)

If the true model is actually kq,

0 1+a log(K)
EUD (0. PP)REo(01XD)| < Tarie + B
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Model selection

Assume that we have K models, define 7%  a variational
approximation of the tempered posterior in model k, and rk its
convergence rate if model k is correct. Put :

~

k = arg max ELBO(75 ,)-
Theorem (Chérief-Abdellatif)

If the true model is actually kq,

1+ O‘rko N log(K)

EUD(PQ,PO) (d8|X1)}§1_an o0 —a)

@ B.-E. Chérief-Abdellatif. Consistency of ELBO maximization for model selection. Proceedings of
AABI 2018.
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More extensions

© more general models with latent variables :

@ Y. Yang, D. Pati & A. Bhattacharya. a-Variational Inference with Statistical Guarantees. The
Annals of Statistics, to appear.
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Extensions

More extensions

© more general models with latent variables :

@ Y. Yang, D. Pati & A. Bhattacharya. a-Variational Inference with Statistical Guarantees. The
Annals of Statistics, to appear.

@ case o = 1, i.e approximation of the “usual” posterior :

@ F. Zhang & C. Gao. Convergence Rates of Variational Posterior Distributions. Preprint arXiv, ’
2017.
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More extensions

© more general models with latent variables :

@ Y. Yang, D. Pati & A. Bhattacharya. a-Variational Inference with Statistical Guarantees. The
Annals of Statistics, to appear.

@ case o = 1, i.e approximation of the “usual” posterior :

@ F. Zhang & C. Gao. Convergence Rates of Variational Posterior Distributions. Preprint arXiv, J
2017.

© approximation based on another distance, for example :
Tno = arg mijgl/\/(,o7 Tna) (Wasserstein distance),
pE

@ J. Huggins, T. Campbell, M. Kasprzak & T. Broderick. Practical bounds on the error of Bayesian

posterior approximations : a nonasymptotic approach. Preprint arXiv, 2018.
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Concentration of variational appr s 0 e po Online variational inference
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Sequential estimation problem

@ O initialize 04,
© x1 revealed,
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Introduction : variationa ian inf Sequential estimation problem
Concentration of variational appr 0 e po Online variational inference
i Simulations

Sequential estimation problem

o
2]
o

initialize 61,
X1 revealed,
incur loss

— log ps, (x1)
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Sequential estimation problem

initialize 61,

X1 revealed,
incur loss

— log py, (x1)

©@ o update 6; — 05,

©00
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Sequential estimation problem

initialize 61,

X1 revealed,
incur loss

— log py, (x1)
update 67 — 65,
Xo revealed,

©00

©0
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Sequential estimation problem

initialize 61,

X1 revealed,
incur loss

— log py, (x1)
update 67 — 65,
Xo revealed,
incur loss

— log py, (x2)

©00

o006
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Sequential estimation problem

initialize 61,

X1 revealed,
incur loss

— log py, (x1)
update 67 — 65,
Xo revealed,
incur loss

— log py, (x2)

© O update 6, — 05,

©00

o006
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Sequential estimation problem

initialize 61,

X1 revealed,
incur loss

— log py, (x1)
update 67 — 65,
Xo revealed,
incur loss

— log py, (x2)

© O update 6, — 05,
0 x3 revealed,

©00

o006
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Sequential estimation problem

initialize 61,

X1 revealed,
incur loss

— log py, (x1)
update 67 — 65,
Xo revealed,
incur loss

— log py, (x2)
update 6> — 63,
X3 revealed,
incur loss

- |Og p93 (X3)

o006 ©00

00
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Sequential estimation problem
Online variational inference
Online variational inference Simulations

Sequential estimation problem

o
2]
o

initialize 61,

X1 revealed,
incur loss

— log py, (x1)
update 67 — 65,
Xo revealed,
incur loss

— log py, (x2)
update 6> — 63,
X3 revealed,
incur loss

- |Og p93 (X3)

Objective :

o006

00
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Introduction : variz inference Sequential estimation problem
Concentration of variational appr E s e posterior Online variational inference
Online variational inference Simulations

Sequential estimation problem

initialize 61,

X1 revealed,
incur loss

— log py, (x1)
update 67 — 65,
Xo revealed,
incur loss

— log py, (x2)
update 6> — 63,
X3 revealed,
incur loss

— |Og p93 (X3)

Objective : make sure that
we learn to predict well as fast
as possible.

o006 ©00

00
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Introduction : variati i e Sequential estimation problem
Online variational inference
Simulations

Q@ O initialize 04,
0 xi reVIeaIed' Objective : make sure that
(3 Tclz(L)Jr OSS(X ) we learn to prediCt well as fast
& Po, (X1 as possible. Keep
Q@ o update 0; — 0,
O x; revealed, T
© incur loss Z[— log po, (x¢)]
— log pg,(x2) t=1
date 0, — 03, :
QO ouw &8 e as small as possible for any T,
O x3 revealed, ith hasti
© incur loss wit (?Ut stoc ::Stldc
_ log ps, (x3) assumptions on the data.
Q ..
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Sequential estimation problem

Online variational inference

Reference

-

PREDICTION, LEARNING, AND GAMES

Nicolds Cesa-Bianchi Gibor Lugosi
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Sequential estimation problem

Online variational inference

Reference

The regret :
T

R(T) =) [ log ps,(x:)]
t=1

T
PREDICTION, LEARNING, AND GAMES - 0'22 : :[_ |Og p@(Xt)]‘
t=1

Nicolds Cesa-Bianchi Gibor Lugosi
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EWA strategy / multipicative update...
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Online variational inference Simulations

EWA strategy / multipicative update...

@ learning rate o > 0.
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@ learning rate o > 0.

e initialize p; = 7 (the prior).
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EWA strategy / multipicative update...

@ learning rate o > 0.

e initialize p; = 7 (the prior).

Algorithm 2 Exponentially Weighted Aggregation
1. fort=1,2,... do
20 0y =Epop 0],
3:  x; revealed, update p;y1(df) = %.
4: end for
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EWA strategy / multipicative update...

@ learning rate o > 0.

e initialize p; = 7 (the prior).

Algorithm 2 Exponentially Weighted Aggregation
1. fort=1,2,... do
20 0y =Epop 0],
3:  x; revealed, update p;y1(df) = %.
4: end for

Note that p; = 7, , the tempered posterior, so problem : how
can we compute 6,7
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A regret bound for EWA

From now, 6 — [— log ps(x;)] is convex + bounded : | - | < C.J

Pierre Alquier Generalization bounds for variational inference



Sequential estimation problem
Online variational inference
Online variational inference Simulations

A regret bound for EWA

From now, 6 — [— log ps(x;)] is convex + bounded : | - | < C.J

T T
> [ log pp,(x)] < inf > Epp[— log py(x:)]
t=1

t=1

N aC?T . K(p, )
2 o
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A regret bound for EWA

From now, 6 — [— log ps(x;)] is convex + bounded : | - | < C.J

T T
> [ log pp,(x)] < inf > Epp[— log py(x:)]
t=1

t=1

N aC?T . K(p, )
2 o

Under similar assumptions than in the batch case, that is, the
prior gives enough mass to relevant #, and a ~ 1/ T,

D[ log py, (x)] < inf [~ log py()] +est. /T
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Z[— log py, (x¢)] < 6'22; Z[— log po(x¢)] + cst.vV/T
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Z[— log py, (x¢)] < 6'22; Z[— log po(x¢)] + cst.vV/T

T T
1 q(x:) 1 q(x:)  cst
?Zlog—<|nf?2|og— :

=1 p@t(xt) NS =1
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Z[— log py, (x¢)] < 6'22; Z[— log po(x¢)] + cst.vV/T

1 q( cst
=) lo lo —i— —
T Z & P T Z P0 X)) T

Assuming that xq, ..., xT are actually i.i.d from @, with
density g, define
1T
=32 0
t=1

we have (“online-to-batch” conversion) :

E[K(Q,Py)] < mflC(Q Pg)+%
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Variational approximations of EWA

@ B.-E. Chérief-Abdellatif, P. Alquier & M. E. Khan. A Generalization Bound for Online Variational
Inference. Preprint arXiv, 2018.
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Variational approximations of EWA

@ B.-E. Chérief-Abdellatif, P. Alquier & M. E. Khan. A Generalization Bound for Online Variational
Inference. Preprint arXiv, 2018.

Parametric variational approxima-
tion :

F=A{qu,neM}.

Objective : propose a way to up-
date piy — fie11 so that g, leads
to similar performances as p; in
EWA...

Pierre Alquier Generalization bounds for variational inference



Sequential estimation problem
Online variational inference
Online variational inference Simulations

SVA and SVB strategies

Algorithm 3 SVA (Sequential Variational Approximation)

1: fort=1,2,... do
2: Qt - EquMt [0],
3:  x; revealed, update

’C(quﬂr)

[lei1 = arg m|n w'v Z Eg-q, [— log po(xi)] + o

4: end for
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SVA and SVB strategies

Algorithm 3 SVA (Sequential Variational Approximation)

1: fort=1,2,... do
2: Qt - EquMt [0],
3:  x; revealed, update

’C(quﬂr)] ‘

fei1 = arg m|n [ v ZEQN% log pa(x;)] + o

4: end for

SVB (Streaming Variational Bayes) has update

_ K
1 = arg min [MTWE%%[— log pg(x¢)] +
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NGVI strategy

NGVI (Natural Gradient Variational Inference) : fix some
#>0,

Ht+1

K(qy, ) +’C(quv e
o} o}

= argmin | 1"V, Egq,[— log ps(x)]+
pneM

Pierre Alquier Generalization bounds for variational inference



Sequential estimation problem
Online variational inference
Online variational inference Simulations

NGVI strategy

NGVI (Natural Gradient Variational Inference) : fix some
#>0,

Ht+1

K(qy, ) +’C(quv e
o} o}

= argmin | 1"V, Egq,[— log ps(x)]+
pneM

@ M. E. Khan & W. Lin. Conjugate-computation variational inference : Converting variational
inference in non-conjugate models to inferences in conjugate models. AISTAT, 2017.
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An example : SVB with Gaussian approximations

As an example, assume that § € R, the prior is
7 = N(0, /) and that we use the variational approximation
2
o ... 0

family : g, = gmo =N | m,
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An example : SVB with Gaussian approximations

As an example, assume that § € R, the prior is

7 = N(0, /) and that we use the variational approximation
o2 ... 0

family : g, = gmo =N | m, :
0o ... Jf,

In this case, the update in SVB is :

Mmey1 = My — Oéatz © Vm:mtEQNQm,o't [— log pa(x:)]

a0tV Egeq, |— 0 X
e :O't®h< Ot 0 q2t, [ gpe( t)])

where ® means “componentwise multiplication” and
h(x) = V1 + x?> — x is also applied componentwise.
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An example : SVB with Gaussian approximations

As an example, assume that § € R, the prior is

7 = N(0, /) and that we use the variational approximation
o2 ... 0

family : g, = gmo =N | m, :
0o ... Jf,

In this case, the update in SVB is :

Mmey1 = My — Oéatz © Vm:mtEQNQm,o't [— log pa(x:)]

a0tV Egeq, |— 0 X
0't+1:O't®h< ! frame, [ log ol t)])

2

where ® means “componentwise multiplication” and
h(x) = v/1+ x?> — x is also applied componentwise. We also
have explicit formulas for SVA and NGVI (see the paper).
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A regret bound for SVA

Theorem (Chérief-Abdellatif, A. & Khan)

Assume that i — Eg.q, [ log pg(x¢)] is L-Lipschitz and
convex.
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A regret bound for SVA

Theorem (Chérief-Abdellatif, A. & Khan)

Assume that ji — Eg.q, [~ log pg(x:)] is L-Lipschitz and
convex. (this is for example the case as soon as the
log-likelihood is concave in € and L-Lipschitz, and 1 is a
location-scale parameter).
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A regret bound for SVA

Theorem (Chérief-Abdellatif, A. & Khan)

Assume that i — Eg.q, [ log pg(x¢)] is L-Lipschitz and
convex. Assume that p +— K(p,, ) is y-strongly convex.
Then SVA satisfies :

Z[_ log po, (x¢)]

+

Z[_ log Pe(Xt)]

eM
H t—1

Y (07

S mf {EQN%

Pierre Alquier Generalization bounds for variational inference

al?®T N K(qu, ) }
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A regret bound for SVA

Theorem (Chérief-Abdellatif, A. & Khan)

Assume that i — Eg.q, [ log pg(x¢)] is L-Lipschitz and
convex. Assume that p +— K(p,, ) is y-strongly convex.
Then SVA satisfies :

Z[_ log po, (x¢)]

+

Z[_ log Pe(Xt)]

eM
H t—1

Y (07

12T
S |nf {EQN% (0% + ’C(q/»"ﬂ-) }

For SVB : some results in the Gaussian case.
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A regret bound for SVA

Theorem (Chérief-Abdellatif, A. & Khan)

Assume that i — Eg.q, [ log pg(x¢)] is L-Lipschitz and
convex. Assume that p +— K(p,, ) is y-strongly convex.
Then SVA satisfies :

Z[_ log po, (x¢)]

+

Z[_ log Pe(Xt)]

eM
H t—1

«

12T
S |nf {EQN% (0% + ’C(q/»"ﬂ-) }

For SVB : some results in the Gaussian case. For NGVI : we
were not able to derive regret bounds until now.
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Test on a simulated dataset

Lo Classification - Toy Dataset

08

0.6

Loss

04

02

0.0 + T T T T
0 1000 2000 3000 4000 5000

Figure — Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Breast dataset

1o Classification - Breast Cancer

08
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N —— ]

00

Loss

0 100 200 300 400 500

Figure — Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Pima Indians dataset

Classification - Pima Indians

0 100 200 300 400 500 600 700

Figure — Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Boston Housing dataset

Regression - Boston Housing

50

Loss

20

100 200 300 400 500

Figure — Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Forest Cover Type dataset

os Regression - Forest Cover Type
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02

01

0.0 T T T T
0 20000 40000 60000 80000 100000

Figure — Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Conclusions

© Using online-to-batch conversion, we now have algorithms
for variational inference with provable statistical
properties after a finite number of steps.
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© Using online-to-batch conversion, we now have algorithms
for variational inference with provable statistical
properties after a finite number of steps.

@ SVA, SVB competitive with OGA (online gradient
algorithm, “non-Bayesian”).
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Conclusions

© Using online-to-batch conversion, we now have algorithms
for variational inference with provable statistical
properties after a finite number of steps.

@ SVA, SVB competitive with OGA (online gradient
algorithm, “non-Bayesian”).

© NGVI is the best method on all datasets. Its theoretical
analysis is thus an important open problem. Cannot be
done with our current techniques (using natural
parameters in exponential models lead to non-convex
objectives).
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Thank you'!
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