Matrix factorization for time series analysis

Pierre Alquier

StatML – Imperial and Oxford January 20, 2022

Co-authors

Alquier, P. and Marie, N. (2019). Matrix Factorization for Multivariate Time Series Analysis. *The Electronic Journal of Statistics*.

Alquier, P., Marie, N. and Rosier, A. (2021). Tight Risk Bound for High Dimensional Time Series Completion. *Preprint arXiv* :2102.08178.

Nicolas Marie

Université Paris Nanterre

Amélie Rosier

ESME Sudria and Université Paris Nanterre

Overview

- many statistical problems or ML problems involve the estimation of a high-dimensional, low-rank matrix.
- under an independence assumption on the observations, fast algorithms are known, with strong statistical guarantees.
- little theory in the case of time series / dependent observations.
- take-home message : the known algorithms can also be used for time series safely.

Contents

Introduction : statistical models of matrix recovery

- Motivating examples
- Reminder on SVD

2 Denoising

- Model and estimation
- Theory in the independent case
- Theory for time series

3 Time series completion

- Model and estimation
- Theory in the independent case
- Theory for time series

Motivating examples Reminder on SVD

Contents

Introduction : statistical models of matrix recovery

- Motivating examples
- Reminder on SVD

Denoising

- Model and estimation
- Theory in the independent case
- Theory for time series

3 Time series completion

- Model and estimation
- Theory in the independent case
- Theory for time series

Motivating examples Reminder on SVD

Some examples

Some stats/ML problems where the parameter is a large matrix :

- denoising,
- reduced rank regression (RRR),
- Imatrix completion (e.g for recommender systems),
- quantum tomography,
- ommunity detection in graphs...

Inzenman, A. J. (1975). Reduced-rank regression for the multivariate linear model. *Journal of Multivariate Analysis.*

Candès, E. and Tao, T. (2010). The power of convex relaxation : Near-optimal matrix completion. *IEEE Transactions on Information Theory*.

Gross, D., Liu, Y. K., Flammia, S. T., Becker, S. and Eisert, J. (2010). Quantum state tomography via compressed sensing. *Physical review letters*.

Paul, S. and Chen, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. *The Annals of Statistics*.

Motivating examples Reminder on SVD

Dimension reduction

- in denoising, M is $d \times T$ and we observe exactly $n = d \times T$ entries (with noise),
- in matrix completion, M is $d \times T$ and we observe only n entries with $n \ll d \times T$ (possibly with noise)...

Estimation is only possible under dimension reduction.

The low-rank assumption is meaningful in many examples (and successful in applications).

Motivating examples Reminder on SVD

Singular Value Decomposition (SVD)

Assume that *M* is $d \times T$ and rank(M) = r.

We have $\simeq r(d + T)$ parameters to estimate.

Motivating examples Reminder on SVD

Existing results

Efficient algorithms exploiting a low-rank assumption were proposed.

A strong theory was developped so these algorithms come with guarantees. For example :

• in the noiseless case

Candès, E. and Tao, T. (2010). The power of convex relaxation : Near-optimal matrix completion. *IEEE Transactions on Information Theory*.

• when the noise is i.i.d

Koltchinskii, V., Lounici, K. and Tsybakov, A. (2011). Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. *The Annals of Statistics*.

Model and estimation Theory in the independent case Theory for time series

Contents

Introduction : statistical models of matrix recovery

Motivating examples
 Reminder on SVD

Denoising

- Model and estimation
- Theory in the independent case
- Theory for time series

Time series completion

- Model and estimation
- Theory in the independent case
- Theory for time series

Model and estimation Theory in the independent case Theory for time series

Matrix denoising model

Matrix denoising model

We observe X where

$$X=M+\mathcal{E}$$

and

- M is a $d \times T$ matrix (to recover),
- *E* is some random noise.

Introduction : statistical models of matrix recovery Denoising Time series completion Theory for time series

Estimation

Reminder : Frobenius norm and nuclear norm

$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2}, ||A||_1 = \sum_i \sigma_i(A).$$

• Rank constrained estimator :

$$\widehat{M}_k = \operatorname*{arg\,min}_{\mathrm{rank}(A) \leq k} \|X - A\|_F^2.$$

Solution : in the SVD of X, replace each $\sigma_i(X)$ by $\sigma_i(X)\mathbf{1}_{\{i>k\}}$.

• Nuclear-norm penalized estimator :

$$\widetilde{M}_{\lambda} = \operatorname*{arg\,min}_{A} \left\{ \|X - A\|_{F}^{2} + \lambda \|A\|_{1}
ight\}.$$

Solution : in the SVD of X, replace each $\sigma_i(X)$ by $\max(\sigma_i(X) - \frac{\lambda}{2}, 0)$.

Model and estimation Theory in the independent case Theory for time series

Theoretical analysis

We first focus on the independent case : the entries of \mathcal{E} are i.i.d $\mathcal{N}(0, \sigma^2)$.

Theorem

For any s > 0, with probability at least $1 - 2 \exp(-s)$,

$$\|\widehat{M}_k - M\|_F^2 \leq C \left\{ \inf_{\mathrm{rank}(A) \leq k} \|A - M\|_F^2 + \sigma^2 k (d + T + s)
ight\}$$

for some universal constant C. In particular, if $rank(M) = r \le k$,

$$\|\widehat{M}_k - M\|_F^2 \leq C\sigma^2 k(d+T+s).$$

Model and estimation Theory in the independent case Theory for time series

A toy example : denoising Mondrian's paintings

Model and estimation Theory in the independent case Theory for time series

Mondrian's paintings : black and white version

Model and estimation Theory in the independent case Theory for time series

Mondrian's paintings : adding a Gaussian noise

Model and estimation Theory in the independent case Theory for time series

Mondrian's paintings : SVD of X

> SVD = svd(X)

> SVD\$d

[1]	705.2966509	147.2653999	40.3910584	6.1156832
[5]	5.9563710	5.8878358	5.8747333	5.8484616
[10]	5.8154512	5.7746063	5.7607876	5.7512011
[15]	5.7245453	5.7007277	5.6785695	5.6556892
765]	0.4789888	0.4684564	0.4519168	0.4447403
> SV	D\$d[4:768] =	0		
> Mh	at = SVD\$u %*	% diag(SVD\$d)	%*% t(SVD\$v))

Model and estimation Theory in the independent case Theory for time series

Mondrian's paintings : adding a Gaussian noise

Model and estimation Theory in the independent case Theory for time series

Rank selection

Theorem

For some universal constant c > 0 (see the paper) we define

$$\widehat{r} = \arg\min_{k} \left\{ \|\widehat{M}_{k} - X\|_{F}^{2} + c\sigma^{2}k(d + T + s) \right\}.$$

Then, if rank(M) = r unknown, with probability at least $1 - 2 \exp(-s)$,

$$\|\widehat{M}_{\widehat{r}}-M\|_F^2 \leq C\sigma^2 r(d+T+s).$$

Introduction : statistical models of matrix recovery Denoising Time series completion Theory for time series

Multivariate time series matrices

$$X = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots \\ x_{2,1} & x_{2,1} & \dots \\ x_{3,1} & x_{3,1} & \dots \end{pmatrix}$$

Shih, S.-Y., Sun, F.-K. and Lee, H.-Y. (2019). Temporal pattern attention for multivariate time series forecasting. *Machine Learning*.

Pierre Alquier, RIKEN AIP Matrix factorization for time series

Introduction : statistical models of matrix recovery Denoising Time series completion Theory in the independent case Theory for time series

Theory for time series

This time, we allow the rows of \mathcal{E} to be $\mathcal{N}(0, \Sigma)$.

Theorem

For any s > 0, with probability at least $1 - 2\exp(-s)$,

$$\|\widehat{M}_k - M\|_F^2 \leq C \left\{ \inf_{\operatorname{rank}(A) \leq k} \|A - M\|_F^2 + \|\Sigma\|_{\operatorname{op}} k(d + T + s) \right\}$$

where $\|\Sigma\|_{\mathrm{op}} = \sup_{x} \|\Sigma x\| / \|x\|$ is the operator norm of Σ .

Examples :

• i.i.d noise,
$$\Sigma = \sigma^2 I$$
, then $\|\Sigma\|_{op} = \sigma^2$.
• autoregressive noise $\mathcal{E}_{i,t+1} = \rho \mathcal{E}_{i,t} + \eta_{i,t}$, $\operatorname{Var}(\eta_{i,t}) = \sigma^2$, then

$$\Sigma = \sigma^{2} \begin{pmatrix} 1 & \rho & \dots & \rho^{T-1} \\ \rho & 1 & \dots & \rho^{T-2} \\ \vdots & \ddots & \ddots & \vdots \\ \rho^{T-1} & \dots & \rho & 1 \end{pmatrix} \text{ and } \|\Sigma\|_{\mathrm{op}} = \sigma^{2} \frac{1+|\rho|}{1-|\rho|}$$

Model and estimation Theory in the independent case Theory for time series

Contents

Introduction : statistical models of matrix recovery

- Motivating examples
- Reminder on SVD

Denoising

- Model and estimation
- Theory in the independent case
- Theory for time series

3 Time series completion

- Model and estimation
- Theory in the independent case
- Theory for time series

Model and estimation Theory in the independent case Theory for time series

A matrix completion model

Matrix completion model

We observe, for $\ell = 1, \ldots, n$

• (i_{ℓ}, j_{ℓ}) drawn uniformly on $\{1, \ldots, d\} \times \{1, \ldots, T\}$,

•
$$X_\ell = M_{i_\ell,j_\ell} + \mathcal{E}_\ell$$
 ,

where

- M is a $d \times T$ matrix (to recover),
- \mathcal{E}_{ℓ} is some noise.

Model and estimation Theory in the independent case Theory for time series

Estimators

• Rank constrained estimation :

$$\widehat{M}_k = \operatorname*{arg\,min}_{\mathrm{rank}(\mathcal{A}) \leq k} \sum_{\ell=1}^n \left(X_\ell - A_{i_\ell, j_\ell} \right)^2.$$

• Nuclear-norm penalized estimator :

$$\widetilde{M}_{\lambda} = rgmin_A \left\{ \sum_{\ell=1}^n \left(X_\ell - A_{i_\ell, j_\ell}
ight)^2 + \lambda \|A\|_1
ight\}.$$

Both estimators are implemented in R in the SoftImpute package.

Introduction : statistical models of matrix recovery Denoising

Time series completion

Model and estimation Theory in the independent case Theory for time series

Collaborative filtering / recommender systems

	PODYSSEE			EA INCONNUE
Claire	4	?	3	
Nial	?	4	?	
Brendon	2	?	4	
Andrew	?	4	?	
Adrian	1	?	?	
Pierre	?	5	?	
:	:	:		·

Model and estimation Theory in the independent case Theory for time series

Netflix Prize

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 - leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Gran	d Prize - RMSE = 0.8567 - Winning 1	feam: BellKor's Pra	gmatic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace_	0.8612	9.59	2009-07-24 17:18:43

Model and estimation Theory in the independent case Theory for time series

http ://movielens.org

movielens

Non-commercial, personalized movie recommendations.

recommendations

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.

Model and estimation Theory in the independent case Theory for time series

Movies in MovieLens 100K

1682 movies

1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|10 2|GoldenEve (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?GoldenEve%20(1995)|011|1000000 3|Four Rooms (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Four%20Rooms%20(1995)|0|0|0|0|0|0 4 Get Shorty (1995) 01-Jan-1995 | http://us.imdb.com/M/title-exact?Get%20Shorty%20(1995) 01100001 5|Copycat (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Copycat%20(1995)|0|0|0|0|0|0|0|1|0|1|0 6|Shanghai Triad (Yao a yao yao dao waipo giao) (1995)|01-Jan-1995||http://us.imdb.com/Title?Yao+a+ 7|Twelve Monkevs (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Twelve%20Monkevs%20(1995)|0|0 8|Babe (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Babe%20(1995)|0|0|0|0|0|1|1|0|0|1|0|0|0|0 9|Dead Man Walking (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Dead%20Man%20Walking%20(199 10|Richard III (1995)|22-Jan-1996||http://us.imdb.com/M/title-exact?Richard%20III%20(1995)|0|0|0|0| 11|Seven (Se7en) (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Se7en%20(1995)|0|0|0|0|0|0|0|1| 12|Usual Suspects, The (1995)|14-Aug-1995||http://us.imdb.com/M/title-exact?Usual%20Suspects,%20The 13 Mighty Aphrodite (1995) 30-Oct-1995 | http://us.imdb.com/M/title-exact?Mighty%20Aphrodite%20(1995 14|Postino. Il (1994)|01-Jan-1994||http://us.imdb.com/M/title-exact?Postino.%20Il%20(1994)|0|0|0|0| 15/Mr. Holland's Opus (1995)/29-Jan-1996//http://us.imdb.com/M/title-exact?Mr.%20Holland's%200pus%2 16 French Twist (Gazon maudit) (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Gazon%20maudit% 17|From Dusk Till Dawn (1996)|05-Feb-1996||http://us.imdb.com/M/title-exact?From%20Dusk%20Till%20Da 18/White Balloon. The (1995)/01-Jan-1995//http://us.imdb.com/M/title-exact?Badkonake%20Sefid%20(199 19|Antonia's Line (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Antonia%20(1995)|0|0|0|0|0|0|0 20 Angels and Insects (1995) |01-Jan-1995 || http://us.imdb.com/M/title-exact?Angels%20and%20Insects%2 21|Muppet Treasure Island (1996)|16-Feb-1996||http://us.imdb.com/M/title-exact?Muppet%20Treasure%20 22|Braveheart (1995)|16-Feb-1996||http://us.imdb.com/M/title-exact?Braveheart%20(1995)|0|1|0|0|0|0|

Model and estimation Theory in the independent case Theory for time series

Users in MovieLens 100K

943 users

1|24|M|technician|85711 2|53|F|other|94043 3|23|M|writer|32067 4|24|M|technician|43537 5|33|F|other|15213 6|42|M|executive|98101 7|57|M|administrator|91344 8|36|M|administrator|05201 9|29|M|student|01002 10|53|M|lawyer|90703 11|39|F|other|30329 12|28|F|other|06405 13|47|M|educator|29206

Model and estimation Theory in the independent case Theory for time series

Reading the data with SoftImpute

> X = read.table("u.data",header=FALSE)

> X

	V1	V2	VЗ	V4
1	196	242	3	881250949
2	186	302	3	891717742
3	22	377	1	878887116
4	244	51	2	880606923
5	166	346	1	886397596

. . . .

> A = Incomplete(i=X\$V1,j=X\$V2,x=X\$V3)

Model and estimation Theory in the independent case Theory for time series

Incomplete matrices

> A																				
[1,]	5	3	4	3	3	5	4	1	5	3	2	5	5	5	5	5	3	4	5	4
[2,]	4									2			4	4		•			3	
[3,]																•				
[4,]								•			4		•	•		•			•	
[5,]	4	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4		•	
[6,]	4	•	•	•	•		2	4	4	•		4	2	5	3	•			4	
[7,]		•	•	5	•	•	5	5	5	4	3	5	•	•	•	•	•		•	
[8,]		•	•	•	•	•	3	•	•	•	3	•	•	•	•	•	•		•	
[9,]	•	•	•	•	•	5	4	•		•	•	•	•	•	•	•	•		•	
[10,]	4			4			4		4		4	5	3			4				

Model and estimation Theory in the independent case Theory for time series

The *softImpute* function

$$\widehat{M} \leftarrow \min_{A} \left\{ \sum_{i,j} (A_{i,j} - X_{i,j})^2 + \lambda \|A\|_1 \right\}$$

How it works :

Introduction : statistical models of matrix recovery Denoising Time series completion Theory in the independent case Theory for time series

Example

> A																				
[1,]	5	3	4	3	3	5	4	1	5	3	2	5	5	5	5	5	3	4	5	4
[2,]	4									2			4	4					3	
[3,]				•				•	•								•	•		
[4,]	•	•	•	•	•	•	•	•	•	•	4	•	•	•	•	•	•	•	•	•
> B=s	soi	[t]	[mp	out	ce((A)	ra, ra	nl	c.r	naz	c=5	5,]	Lan	nbc	la=	=0,	ty	pe	e='	'svd")
> 1mp	out	ce (В,	З,	,1))														
[1] 1.	. 36	513	311	L																
> imp	out	ce	(В,	4,	,1))														
[1] 2	. 48	356	53																	

Model and estimation Theory in the independent case Theory for time series

How to get many entries

> A																				
[1,]	5	3	4	3	3	5	4	1	5	3	2	5	5	5	5	5	3	4	5	4
[2,]	4			•		•			•	2		•	4	4					3	•
[3,]	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•				•
[4,]	•	•		•		•	•	•	•	•	4	•	•	•	•		•	•	•	•
> B=: > i = > j = > im] [1] 1 0	soi = (out . 34 . 11	ft] c(3 c(1 te(132 185	Emp 3,3 1,2 (B, 293	put 3,3 2,3 ,1 32 35	ce 3,4 3,1 ,j) 0, 1,	(A 1,2 1,2 .36 .87	, ra 1, 4 2, 3 531 732	ank 1) 3) 144 269	49 19	na:	c=5	5,I 269	Lar	nbo 14	la= 2	=0 ; . 73	,t) 306	7pe	e=' 30	'svd")

Model and estimation Theory in the independent case Theory for time series

How to get the full matrix

> B=softImpute(A,rank.max=5,lambda=0,type="svd")
> Y = complete(A,B)

Be careful, it can be larger than the memory of your laptop!

Model and estimation Theory in the independent case Theory for time series

Completed MovieLens matrix

> roi	ind	d()	()																				
	[,1]		[,2	2]	[,3]		[,4	4]	Ε	,5]	[,6	6]	[,7]		[,8	3]	[,9]		
[1,]		5	5		3		4	1		3		3	3		5		4	1		1	Ę	5	
[2,]		Z	1		1		4	2		2		()		3		4	1		3	Ę	5	
[3,]		1	1		0		-	1		2			1		1		2	2		1	3	3	
[4,]		3	3		0		2	2		2			1		3		4	1		2	£	5	
• • •																							
> A																							
[1,]	5	3	4	3	3	5	4	1	5	3	2	5	5	5	5	5	3	4	5	4			
[2,]	4	•	•		•	•	•	•		2		•	4	4	•	•			3				
[3,]	•	•	•	•	•	•	•	•		•	•	•		•	•	•							
[4,]											4												

Model and estimation Theory in the independent case Theory for time series

MSE by rank

```
> data = X[1:80000.]
> A = Incomplete(i=data$V1,j=data$V2,x=data$V3)
> test = X[80001:100000,]
> MSE = c()
> for (k in 1:10)
> {
  B = softImpute(A,rank.max=k,lambda=0,type="svd")
>
   pred = impute(object=B,i=test$V1,j=test$V2)
>
 MSE = c(MSE,mean((pred-test$V3)^2))
>
> }
```

Model and estimation Theory in the independent case Theory for time series

MSE by rank

Model and estimation Theory in the independent case Theory for time series

Minimax rate of estimation

Theorem

Assume the noise (ε_{ℓ}) is i.i.d $\mathcal{N}(0, \sigma^2)$ (sub-exponential also works). For a well chosen λ that does not depend on $r = \operatorname{rank}(M)$, and under minimal assumptions on M, with large probability

$$\frac{1}{dT}\left\|\widetilde{M}_{\lambda}-M\right\|_{F}^{2} \leq C\frac{\sigma^{2}r(d+T)\log(d+T)}{n}$$

Moreover, this rate is minimax-optimal (up to the log term).

Koltchinskii, V., Lounici, K. and Tsybakov, A. (2011). Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. *The Annals of Statistics*.

Model and estimation Theory in the independent case Theory for time series

Multivariate time series

Imperio, S. et al. (2010). Investigating population dynamics in ungulates : Do hunting statistics make up a good index of population abundance? Wildlife Biology.

- multivariate series
- correlations
- noisy observations
- missing entries

Introduction : statistical models of matrix recovery Denoising Time series completion Theory for time series

Examples

- econometrics : panel data with missing entries,
- industry : data from sensors at multiple locations,
- ecology : spatial data with observations from a few sites only at each date,
- . . .
- more generally, any situation where we have multivariate time series and each measurement is expensive.

Introduction : statistical models of matrix recovery Denoising Time series completion Theory for time series

Assumptions

Iow-rank trend :

$$M = \underbrace{U}_{d \times k} \underbrace{V}_{k \times T}$$

- temporal correlated noise ε :
 - $\varepsilon_{i,t}$ indep. $\varepsilon_{j,t'}$ $(i \neq j)$

 $\varepsilon_{i,t}$ not indep. $\varepsilon_{i,t'}$

(*i*_ℓ, *t*_ℓ) i.i.d uniform, ξ_ℓ observation noise :

$$X_{\ell} = M_{i_{\ell}, t_{\ell}} + \varepsilon_{i_{\ell}, t_{\ell}} + \xi_{\ell}.$$

Introduction : statistical models of matrix recovery Denoising Time series completion Theory in the independent case Theory for time series

Reminder on ϕ -mixing

Given two σ -algebras \mathcal{A} and \mathcal{B} ,

$$\phi(\mathcal{A},\mathcal{B}) = \sup \Big\{ |\mathbb{P}(\mathcal{A}) - \mathbb{P}(\mathcal{A}|\mathcal{B})| : (\mathcal{A},\mathcal{B}) \in \mathcal{A} imes \mathcal{B}, \ \mathbb{P}(\mathcal{B}) > 0 \Big\}.$$

Given a stationary time series $S = (S_t)_{t \in \mathbb{Z}}$,

$$\phi_{\mathcal{S}}(h) = \phi\Big(\sigma(\ldots, S_{t-2}, S_{t-1}, S_t), \sigma(S_{t+h}, S_{t+h+1}, S_{t+h+2}, \ldots)\Big).$$

The series S is said to be ϕ -mixing iff

$$\sum_{h=0}^{\infty}\phi_{\mathcal{S}}(h)<+\infty.$$

Introduction : statistical models of matrix recovery Denoising Time series completion Theory for time series

More assumptions

$$X_{\ell} = M_{i_{\ell}, t_{\ell}} + \varepsilon_{i_{\ell}, t_{\ell}} + \xi_{\ell}.$$

•
$$M = \bigcup_{d \times r} \bigvee_{r \times T}$$
 and $|U_{i,h}|, |V_{h,t}| \le c_{U,V}/\sqrt{r}$.

- (i_{ℓ}, t_{ℓ}) i.i.d uniform on $\{1, \ldots, d\} \times \{1, \ldots, T\}$;
- $(\varepsilon_{i,t})_{t=1,...,T}$ is a bounded, ϕ -mixing time series :

$$|arepsilon_{i,t}| \leq m_arepsilon$$
 and $\sum_{t=1}^\infty \phi_{arepsilon_{i,\cdot}}(t) \leq \Phi_arepsilon.$

• (ξ_{ℓ}) are i.i.d, sub-exponential variables : for $k \geq 2$,

$$\mathbb{E}(|\xi_\ell|^q) \leq \frac{v_\xi c_\xi^{q-2} q!}{2}$$

Introduction : statistical models of matrix recovery Model and estimation Denoising Time series completion

Theory in the independent case Theory for time series

Estimator and risk bound

$$\widehat{M}_k = \underbrace{\underset{d \times T}{\operatorname{arg\,min}}}_{k \to T} \underbrace{\underset{d \times k}{\operatorname{arg\,min}}}_{Z \to Z} \sum_{k \times T}^n (X_\ell - A_{i_\ell, j_\ell})^2.$$

Theorem

With probability at least $1 - \exp(-s)$, as soon as $k \ge r$,

$$\frac{1}{dT}\left\|\widehat{M}_k - M\right\|_F^2 \leq C \frac{k(d+T)\log(n) + s}{n}$$

where $C = C(c_{U,V}, m_{\varepsilon}, \Phi_{\varepsilon}, v_{\xi}, c_{\xi})$ is known.

Introduction : statistical models of matrix recovery Denoising Time series completion Theory for time series

Remarks on the proof

- decompose the difference between *empirical risk* and *expected risk* $\frac{1}{n} \sum_{\ell=1}^{n} (Y_{\ell} X_{i_{\ell},j_{\ell}})^2 \frac{1}{dT} \sum_{i,j} (M_{i,j} X_{i,j})^2$ in elementary terms.
- Some of these terms are sums of i.i.d variables. Bound them via Bernstein inequality. Some are sums of φ-mixing variables, use :

Samson, P.-M. (2000). Concentration of measure inequalities for Markov chains and Φ -mixing processes. The Annals of Probability.

union bound.

REMARK : if the $\varepsilon_{i,.}$ satisfy another notion of mixing or weak-dependence, we can use alternative versions of Bernstein inequality but this lead to slower rates of convergence, in $1/\sqrt{n}$.

Introduction : statistical models of matrix recovery Denoising Time series completion Theory in the independent case Theory for time series

Rank selection

$$\widehat{r} = \operatorname*{arg\,min}_{1 \le k \le \min(d,T)} \left\{ \frac{1}{n} \sum_{\ell=1}^{n} ((\widehat{M}_k)_{i_\ell, j_\ell} - X_\ell)^2 + c \frac{k(d+T)\log(n)}{n} \right\}$$

where $c = c(c_{U,V}, m_{\varepsilon}, \Phi_{\varepsilon}, v_{\xi}, c_{\xi})$ is known but too large.

In practice : we use the slope heuristic to calibrate a better c.

Theorem

With probability at least $1 - \exp(-s)$,

$$\frac{1}{dT}\left\|\widehat{M}_{\widehat{r}}-M\right\|_{F}^{2}\leq C\frac{r(d+T)\log(n)+s}{n}.$$

Introduction : statistical models of matrix recovery Denoising Time series completion Model and estimation Theory in the independent case Theory for time series

What about Bayes?

Review of low-rank inducing priors, and theoretical study for denoising / matrix regression :

Alquier, P. (2013). Bayesian Methods for Low-rank Matrix Estimation : Short Survey and Theoretical Study. International conference on Algorithmic Learning Theory (ALT).

For matrix completion :

Mai, T. T. and Alquier, P. (2015). A Bayesian Approach for Matrix Completion : Optimal Rate under General Sampling Distribution. *Electronic Journal of Statistics.*