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Estimators, randomized estimators and Bayes rule

@ Yi,=Y1,...,Y,iid from u*,

@ model : (uy, 0 € ©),

@ estimator : = QA( Yin),

@ randomized estimator : 5(-) = p(Y1.,)(-) probability
measure on ©.

Examples of randomized estimators :
@ posterior : j(0) = (0| Y1.n) o< L(0; Y1) ,
—_——
likelihood
@ fractional /tempered posterior : () o< [L(6; Y1.,)]° :
@ Gibbs estimator : () o< exp[—n R(0; Yi.,)]
—

loss

Pierre Alquier, RIKEN AIP Discrepancy-based ABC



Randomized estimators and Bayes rule
Approximate Bayesian Computation (ABC)
Integral Probability Metric (IPM)

Introduction

Evaluating randomized estimators

Assume in this slide that p* = pg, : “the truth is in the model”.
Statistical performance of an estimator :

e consistency : d(f,6,) — 0 (in proba., a.s., ...)?
n—o0

e rate of convergence : Ey, [d(0,60)] < r, — 07
n—oo
° ...

For a randomized estimator :

@ contraction rate :
Py..;[d(8,60) > r,] —— 0 ('in proba., as., ...)7
n—oo

@ average risk : Ey, [Eqs[d(0,00)]| < r,?
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Introduction

Approximate Bayesian Inference

@ Well-known conditions to prove contraction of the
posterior,

@ tools from ML for randomized estimators : PAC-Bayes
bounds.

Given a “non-exact” algorithm targetting /) instead of
7(+| Y1.,) : variational approximations, ABC, etc., we can

@ quantify how well p approximates 7(-|Y1.,) 7

@ study ) as a randomized estimator and study its
contraction/convergence.
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Reminder on ABC

Approximate Bayesian Computation (ABC)

INPUT : sample Yi., = (Y1,..., Ys), model (ug,6 € ©),
, statistic S, metric 0 and threshold e.
(i) sample 6 ~ 7,
(ii) sample Z1., = (Z4,...,2Z,) i.id. from py :
o if 8(5(Y1:n), S(Z1:n)) < € return 6,
e else goto (i).

OUTPUT : 9 ~ j.

@ discrete sample space, if S =identity and ¢ =0, ABC is
actually exact : p(+) = w(+| Y1.n)-
@ general case : ABC not exact, we can ask two questions :
© is /(-) a good approximation of m(-|Y1.n)?
@ is ) a good randomized estimator ?
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Reminder on IPM

Integral Probability Metrics (IPM)

Let F be a set of real-valued, measurable functions and put

dr(1,v) = sup| Ex [F(X)] =~ Exu [F(X)]]

@ Miiller, A. (1997). Integral probability metrics and their generating classes of functions. Applied
Probability.

In general, only a semimetric. However, in many cases, it is
actually a metric : dz(p,v) =0 = p = v. Examples :

e total variation : F = {14, A measurable},

@ Kolmogorov : F = {1(_x . X € R},

@ Wasserstein : F = set of 1-Lipschitz functions,
@ Dudley...
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Example : Maximum Mean Discrepancy (MMD)

@ RKHS (H, (-, -)4) with kernel k(x,y) = (#(x), p(y))y-
o If ||¢(x)|ln = k(x,x) <1 then Ex.,[¢(X)] is well-defined .
@ The map p+— Ex.,[¢(X)] is one-to-one if k is characteristic.

@ Gaussian kernel k(x,y) = exp(—||x — y||?/7?) satisfies these
assumption.

F={feHH: |flx <1}

(11, ) = sup B, (X)) ~ Exc [A(X)]

= [Exesdotn ~Btetrr], |
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IPM and statistical estimation

We define the “empirical probability distribution”

l/’}’yl:n = %Zéyl
i=1

Minimum distance estimator

0 := argmin dr (g, iy, )-
0c©

If dr is the MMD for a bounded & characteristic kernel,

2
. * < H * N
]E[d]:(/“LQ’M )] = 0'2({; d]"(:uﬁnu’ )+ \/ﬁ
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Robust estimation with MMD

) . 2
E [dr (115, 1)] < inf dr(juo, 1') + —=. J

o well-specified case, pu* = py,,

E [dr (k. Hoo)] < 2/V/n. ]
@ Huber contamination model p* = (1 — &)ug, + v,

dr(pe,, 1*) = ?Ug |EX~,LL9° f(X) = (1 = €)Expg, F(X) — eExuf(X)|
S

= & sup [Exnpp, F(X) — Ex~n f(X)| < 2¢
feF

E [d7(1g: o)) < 4e +2/+/n. J
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MDE and robustness : toy experiment

Model : N(0,1), Xi,..., X, i.i.d N(6,1), n =100 and we
repeat the exp. 200 times. Kernel k(x, y) = exp(—|x — y|).

Omie éKS
mean abs. error 0.081 0.088

Now, ¢ = 2% of the observations drawn from a Cauchy.

mean abs. error 0.276 0.088
Now, € = 1% are replaced by 1, 000.

mean abs. error 10.008 0.082
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References on minimum MMD estimation

@ Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via

maximum mean discrepancy optimization. UAI 2015.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv.

Chérief-Abdellatif, B.-E. and Alquier, P. (2022). Finite Sample Properties of Parametric MMD
Estimation : Robustness to Misspecification and Dependence. Bernoulli.

via Maximum Mean Discrepancy. JASA (to appear).

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via Maximum Mean Discrepancy.

@ Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. Estimation of copulas
Preprint arXiv.

Wolfer, G. and Alquier, P. Variance-Aware Estimation of Kernel Mean Embedding. Preprint
arXiv :2210.06672.
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Discrepancy-based ABC

Approximate Bayesian Computation (ABC)

INPUT : sample Yi.,, model (1,0 € ©), , IPM dr and
threshold e.

(i) sample 6 ~ 7,

(ii) sample Z;., i.i.d. from gy :
o if dr(fiy,.,, flz,.,) < € return 6,
o else goto (i).

OUTPUT : 9 ~ j..

Rermark : when dr is the MMD with kernel k,

A (v Azn) = D k(Y0 V) = 23" k(Y1 Z) + D" KZ:, Z).
iJ iJ

i
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Approximation of the posterior

@ Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

Contains a general result that can be applied here.

Assume
@ /iy has a continuous density f; and for some neighborhood
V of Yi., we have supyegsup,, oy [11; fo(vi) < +o0.
@ vi., = dx(fiy,,, flv,,) is continuous.
Then
V measurable set A, p.(A) — 7(A|Y1.n)-

e—0
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Assumptions for contraction

(C1) Y-valued Yi.,, = (Y1,...,Y,) iid from pu,, put :
¢ = Inf dr(1, ji.)-

(C2) prior mass condition : there is ¢ > 0, L > 1 such that

(C3) functions in F are bounded :

supsup |f(y)| < b.
feF yey

(C4) the Rademacher complexity 9R,(F) satisfies
R,(F) — 0.

n—o00
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Reminder on Rademacher complexity

R,(F):=supEy,  v,~nE . |sup— eif(Y;)
m fer n i—1

where ¢4, ...,e, are i.i.d Rademacher variables :
Ple; =1) =P(e; = —1) = 1/2.
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Examples

@ TV : F ={1a A measurable},
R, (F) - 0 in general.
@ Kolmogorov : F = {1(_x, X € R},

Ry (F) <2 — 0.
@ Wasserstein : F = set of 1-Lipschitz functions,
R,(F) — 0if X is bounded, see Corollary 8 in

log(n + 1)
n

Non-parametric estimation of integral probability metrics. IEEE International Symposium on

@ Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schélkopf, B., Lanckriet, G.R. (2010).
Information Theory.

e MMD :
k
R,(F) < \/ —supyeyn )
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Contraction of discrepancy-based ABC

Under (C1)-(C4), with € := ¢, = €¢* + &, with €, — 0,
ne2 — oo and €,/MR,(F) — oo. Then, for any sequence

M, > 1,
A({@ee-d( )>e*+r})<2'3L
Pen - Ar\ e, M n =M,
4z, 2 log(%2)

where r, = 3 + 2R,(%) + b\ —=,

S

with probability — 1 with respect to the sample Yi.,.
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Examples

@ Assume R,(F) < c/1/n (MMD, Kolmogorov...).
Take M,, = n and €, = \/log(n)/n to get

2.3t
cn

Pen <{0 €0: d]—'(ﬂ%ﬂ*) >+ rn}) <

where r, = O (W)

o Larger R,(F) will lead to slower rates.
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Removing (C3)-(C4)

o if we remove (C3)-(C4), we cannot use classical
concentration results on dr (i, fiy,,) and dr (19, [iz,.).

@ we can still provide a result under the assumption that
“some concentration holds”, as

@ Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

for the Wasserstein distance.

@ however, this will impose assumptions on ., {14,0 € ©}
and might lead to slower contraction rates. In our paper,
we illustrate this with MMD with unbounded kernels :

k
mn(F) < \/suPyey (y,)/) = 400
n
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Example : MMD-ABC with unbounded kernel

Under (C1)-(C2), and

(C5) Eypu.[k(Y,Y)] < o0,

(C6) supgee Eznyy[k(Z, Z)] < 400,

€, = € + €, with €, — 0. Then, for some C > 0, for any
sequence M,, > 1, with proba. — 1,

C
ﬁ€n<{9 € O dr(ug, ps) > € + r,,}) < Y
4€, M2
where r, = 3 PR

For example M, = \/n we can get r, = O(1/n*""1).
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Experiments in the Gaussian case

254 . 3
204
o
154 =R
B3 o0s
=R
T B3 015
054
00

NII\.AD Wassérslein K.L ¥ —dive;'gence “Exact™ .Gaussian
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Conclusion

@ we provide an analysis of discrepancy-based ABC for a
large class of IPM.

@ in particular, ABC with MMD leads to robust estimation,
without assumptions on the model nor on the truth.

@ note that other discrepancies were studied and probably
more should be investigated

@ Frazier, D. T. (2020). Robust and efficient Approximate Bayesian Computation : A minimum
distance approach. Preprint arXiv.

@ Nguyen, H. D., Arbel, J., Lii, H. and Forbes, F. (2020). Approximate Bayesian computation via
the energy statistic. IEEE Access.

@ important extension to non i.i.d observations (time series,
etc.). Note that strong concentration of dr (/i., [iy,,) is
known in this setting (our joint paper with B.-E.
Chérief-Abdellatif, Bernoulli 2022).
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Y
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