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Estimators, randomized estimators and Bayes rule

Y1:n = Y1, . . . ,Yn i.i.d from µ∗,
model : (µθ, θ ∈ Θ),
estimator : θ̂ = θ̂(Y1:n),
randomized estimator : ρ̂(·) = ρ̂(Y1:n)(·) probability
measure on Θ.

Examples of randomized estimators :
posterior : ρ̂(θ) = π(θ|Y1:n) ∝ L(θ;Y1:n)︸ ︷︷ ︸

likelihood

π(θ)︸︷︷︸
prior

,

fractional/tempered posterior : ρ̂(θ) ∝ [L(θ;Y1:n)]
απ(θ),

Gibbs estimator : ρ̂(θ) ∝ exp[−η R(θ;Y1:n)︸ ︷︷ ︸
loss

]π(θ).
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Evaluating randomized estimators
Assume in this slide that µ∗ = µθ0 : “the truth is in the model”.
Statistical performance of an estimator :

consistency : d(θ̂, θ0) −−−→
n→∞

0 ( in proba., a.s., ...) ?

rate of convergence : EY1:n [d(θ̂, θ0)] ≤ rn −−−→
n→∞

0 ?
...

For a randomized estimator :
contraction rate :

Pθ∼ρ̂[d(θ, θ0) ≥ rn] −−−→
n→∞

0 ( in proba., a.s., ...) ?

average risk : EY1:n

[
Eθ∼ρ̂[d(θ, θ0)]

]
≤ rn?

...
Pierre Alquier, RIKEN AIP Discrepancy-based ABC



Introduction
Discrepancy-based ABC

Randomized estimators and Bayes rule
Approximate Bayesian Computation (ABC)
Integral Probability Metric (IPM)

Approximate Bayesian Inference

Well-known conditions to prove contraction of the
posterior,
tools from ML for randomized estimators : PAC-Bayes
bounds.

Given a “non-exact” algorithm targetting ρ̂ instead of
π(·|Y1:n) : variational approximations, ABC, etc., we can

quantify how well ρ̂ approximates π(·|Y1:n) ?
study ρ̂ as a randomized estimator and study its
contraction/convergence.
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Reminder on ABC
Approximate Bayesian Computation (ABC)

INPUT : sample Y1:n = (Y1, . . . ,Yn), model (µθ, θ ∈ Θ), prior
π, statistic S , metric δ and threshold ϵ.
(i) sample θ ∼ π,
(ii) sample Z1:n = (Z1, . . . ,Zn) i.i.d. from µθ :

if δ(S(Y1:n),S(Z1:n)) ≤ ϵ return θ,
else goto (i).

OUTPUT : ϑ ∼ ρ̂.

discrete sample space, if S =identity and ϵ = 0, ABC is
actually exact : ρ̂(·) = π(·|Y1:n).
general case : ABC not exact, we can ask two questions :

1 is ρ̂(·) a good approximation of π(·|Y1:n) ?
2 is ρ̂ a good randomized estimator ?
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Reminder on IPM

Integral Probability Metrics (IPM)

Let F be a set of real-valued, measurable functions and put

dF(µ, ν) = sup
f ∈F

∣∣∣EX∼µ[f (X )]− EX∼ν [f (X )]
∣∣∣.

Müller, A. (1997). Integral probability metrics and their generating classes of functions. Applied
Probability.

In general, only a semimetric. However, in many cases, it is
actually a metric : dF(µ, ν) = 0 ⇒ µ = ν. Examples :

total variation : F = {1A, A measurable},
Kolmogorov : F = {1(−∞,x], x ∈ R},
Wasserstein : F = set of 1-Lipschitz functions,
Dudley...
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Example : Maximum Mean Discrepancy (MMD)

RKHS (H, ⟨·, ·⟩H) with kernel k(x , y) = ⟨ϕ(x), ϕ(y)⟩H.

If ∥ϕ(x)∥H = k(x , x) ≤ 1 then EX∼µ[ϕ(X )] is well-defined .

The map µ 7→ EX∼µ[ϕ(X )] is one-to-one if k is characteristic.

Gaussian kernel k(x , y) = exp(−∥x − y∥2/γ2) satisfies these
assumption.

F = {f ∈ H : ∥f ∥H ≤ 1}.

dF(µ, ν) = sup
f ∈F

∣∣∣EX∼µ[f (X )]− EX∼ν [f (X )]
∣∣∣

=
∥∥∥EX∼µ[ϕ(X )]− EX∼ν [ϕ(X )]

∥∥∥
H
.
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IPM and statistical estimation
We define the “empirical probability distribution”

µ̂Y1:n :=
1
n

n∑
i=1

δYi
.

Minimum distance estimator

θ̂ := argmin
θ∈Θ

dF (µθ, µ̂Y1:n).

Theorem
If dF is the MMD for a bounded & characteristic kernel,

E [dF(µθ̂, µ
∗)] ≤ inf

θ∈Θ
dF(µθ, µ

∗) +
2√
n
.
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Robust estimation with MMD

E [dF(µθ̂, µ
∗)] ≤ inf

θ∈Θ
dF(µθ, µ

∗) +
2√
n
.

well-specified case, µ∗ = µθ0 ,

E [dF(µθ̂, µθ0)] ≤ 2/
√
n.

Huber contamination model µ∗ = (1 − ε)µθ0 + εν,

dF (µθ0 , µ
∗) = sup

f∈F

∣∣EX∼µθ0
f (X )− (1 − ε)EX∼µθ0

f (X )− εEX∼ν f (X )
∣∣

= ε sup
f∈F

∣∣EX∼µθ0
f (X )− EX∼ν f (X )

∣∣ ≤ 2ε

E [dF(µθ̂, µθ0)] ≤ 4ε+ 2/
√
n.
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MDE and robustness : toy experiment

Model : N (θ, 1), X1, . . . ,Xn i.i.d N (θ0, 1), n = 100 and we
repeat the exp. 200 times. Kernel k(x , y) = exp(−|x − y |).

θ̂MLE θ̂MMDk
θ̂KS

mean abs. error 0.081 0.094 0.088

Now, ε = 2% of the observations drawn from a Cauchy.

mean abs. error 0.276 0.095 0.088

Now, ε = 1% are replaced by 1, 000.

mean abs. error 10.008 0.088 0.082
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References on minimum MMD estimation

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. UAI 2015.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv.

Chérief-Abdellatif, B.-E. and Alquier, P. (2022). Finite Sample Properties of Parametric MMD
Estimation : Robustness to Misspecification and Dependence. Bernoulli.

Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. Estimation of copulas
via Maximum Mean Discrepancy. JASA (to appear).

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via Maximum Mean Discrepancy.
Preprint arXiv.

Wolfer, G. and Alquier, P. Variance-Aware Estimation of Kernel Mean Embedding. Preprint
arXiv :2210.06672.
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Discrepancy-based ABC

Approximate Bayesian Computation (ABC)

INPUT : sample Y1:n, model (µθ, θ ∈ Θ), prior π, IPM dF and
threshold ϵ.
(i) sample θ ∼ π,
(ii) sample Z1:n i.i.d. from µθ :

if dF (µ̂Y1:n , µ̂Z1:n) ≤ ϵ return θ,
else goto (i).

OUTPUT : ϑ ∼ ρ̂ϵ.

Rermark : when dF is the MMD with kernel k ,

dF (µ̂Y1:n , µ̂Z1:n) =
∑
i ,j

k(Yi ,Yj)− 2
∑
i ,j

k(Yi ,Zj) +
∑
i ,j

k(Zi ,Zj).
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Approximation of the posterior

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

Contains a general result that can be applied here.

Theorem
Assume

µθ has a continuous density fθ and for some neighborhood
V of Y1:n we have supθ∈Θ supv1:n∈V

∏n
i=1 fθ(vi) < +∞.

v1:n 7→ dF(µ̂Y1:n , µ̂v1:n) is continuous.
Then

∀ measurable set A, ρ̂ϵ(A) −−→
ϵ→0

π(A|Y1:n).
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Assumptions for contraction
(C1) Y-valued Y1:n = (Y1, . . . ,Yn) i.i.d from µ∗, put :

ϵ∗ := inf
θ∈Θ

dF(µθ, µ∗).

(C2) prior mass condition : there is c > 0, L ≥ 1 such that

π
({

θ ∈ Θ : dF(µθ, µ∗)− ϵ∗ ≤ ϵ
})

≥ cϵL

(C3) functions in F are bounded :

sup
f ∈F

sup
y∈Y

|f (y)| ≤ b.

(C4) the Rademacher complexity Rn(F) satisfies

Rn(F) −−−→
n→∞

0.
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Reminder on Rademacher complexity

Rademacher complexity

Rn(F) := sup
µ

EY1,...,Yn∼µ Eε1,...,εn

[
sup
f ∈F

1
n

n∑
i=1

εi f (Yi)

]
.

where ε1, . . . , εn are i.i.d Rademacher variables :
P(ϵ1 = 1) = P(ϵ1 = −1) = 1/2.
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Examples
TV : F = {1A, A measurable},

Rn(F) ↛ 0 in general.

Kolmogorov : F = {1(−∞,x], x ∈ R},

Rn(F) ≤ 2

√
log(n + 1)

n
→ 0.

Wasserstein : F = set of 1-Lipschitz functions,

Rn(F) → 0 if X is bounded, see Corollary 8 in

Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G.R. (2010).
Non-parametric estimation of integral probability metrics. IEEE International Symposium on
Information Theory.

MMD :
Rn(F) ≤

√
supy∈Y k(y , y)

n
.
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Contraction of discrepancy-based ABC

Theorem 1
Under (C1)-(C4), with ϵ := ϵn = ϵ∗ + ϵ̄n with ϵ̄n → 0,
nϵ̄2n → ∞ and ϵ̄n/Rn(F) → ∞. Then, for any sequence
Mn > 1,

ρ̂ϵn

({
θ ∈ Θ : dF(µθ, µ∗) > ϵ∗ + rn

})
≤ 2 · 3L

cMn

where rn =
4ϵ̄n
3

+ 2Rn(F) + b

√
2 log(Mn

ε̄Ln
)

n
,

with probability → 1 with respect to the sample Y1:n.
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Examples

Assume Rn(F) ≤ c
√

1/n (MMD, Kolmogorov...).
Take Mn = n and ϵ̄n =

√
log(n)/n to get

ρ̂ϵn

({
θ ∈ Θ : dF(µθ, µ∗) > ϵ∗ + rn

})
≤ 2 · 3L

cn

where rn = O
(√

log(n)/n
)
.

Larger Rn(F) will lead to slower rates.
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Removing (C3)-(C4)
if we remove (C3)-(C4), we cannot use classical
concentration results on dF (µ∗, µ̂Y1:n) and dF (µθ, µ̂Z1:n).
we can still provide a result under the assumption that
“some concentration holds”, as

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

for the Wasserstein distance.
however, this will impose assumptions on µ∗, {µθ, θ ∈ Θ}
and might lead to slower contraction rates. In our paper,
we illustrate this with MMD with unbounded kernels :

Rn(F) ≤
√

supy∈Y k(y , y)

n
= +∞.
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Example : MMD-ABC with unbounded kernel

Theorem 2
Under (C1)-(C2), and

(C5) EY∼µ∗[k(Y ,Y )] < +∞,
(C6) supθ∈Θ EZ∼µθ

[k(Z ,Z )] < +∞,
ϵn = ϵ∗ + ϵ̄n with ϵ̄n → 0. Then, for some C > 0, for any
sequence Mn > 1, with proba. → 1,

ρ̂ϵn

({
θ ∈ Θ : dF(µθ, µ∗) > ϵ∗ + rn

})
≤ C

Mn

where rn =
4ϵ̄n
3

+
M2

n

n2ϵ̄2L
.

For example Mn =
√
n we can get rn = O(1/n2L+1).
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Experiments in the Gaussian case

0.0

0.5

1.0

1.5

2.0

2.5

MMD Wasserstein KL γ -divergence ``Exact`` Gaussian

α

0.00

0.05

0.10

0.15

Pierre Alquier, RIKEN AIP Discrepancy-based ABC



Introduction
Discrepancy-based ABC

Discrepancy-based ABC
Discrepancy-based ABC approximates the posterior
Contraction of discrepancy-based ABC

Conclusion
we provide an analysis of discrepancy-based ABC for a
large class of IPM.
in particular, ABC with MMD leads to robust estimation,
without assumptions on the model nor on the truth.
note that other discrepancies were studied and probably
more should be investigated

Frazier, D. T. (2020). Robust and efficient Approximate Bayesian Computation : A minimum
distance approach. Preprint arXiv.

Nguyen, H. D., Arbel, J., Lü, H. and Forbes, F. (2020). Approximate Bayesian computation via
the energy statistic. IEEE Access.

important extension to non i.i.d observations (time series,
etc.). Note that strong concentration of dF (µ∗, µ̂Y1:n) is
known in this setting (our joint paper with B.-E.
Chérief-Abdellatif, Bernoulli 2022).
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La fin

終わり

ありがとう ございます。
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