Parametric estimation via MMD optimization

Pierre Alquier **RIKEN** Center for Advanced Intelligence Project

Séminaire de Statistique du CREST et du CMAP Feb. 1, 2021

Pierre Alquier, RIKEN AIP Parametric estimation via MMD optimization

Co-authors

Badr-Eddine Chérief-Abdellatif

Univ. of Oxford

Mathieu Gerber

Univ. of Bristol

Alexis Derumigny

Univ. of Twente

Jean-David Fermanian

ENSAE Paris

Pierre Alquier, RIKEN AIP Parametric estimation via MMD optimization

The Maximum Likelihood Estimator (MLE)

Let X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 .

The Maximum Likelihood Estimator (MLE)

Let X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 .

Statistical inference :

- propose a model $(P_{\theta}, \theta \in \Theta)$, assume $P_0 = P_{\theta_0}$.
- compute $\hat{\theta}_n = \hat{\theta}_n(X_1, \ldots, X_n)$.

The Maximum Likelihood Estimator (MLE)

Let X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 .

Statistical inference :

- propose a model $(P_{\theta}, \theta \in \Theta)$, assume $P_0 = P_{\theta_0}$.
- compute $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$.

Letting p_{θ} denote the density of P_{θ} , then

$$\hat{\theta}_n^{MLE} = \operatorname*{arg\,max}_{\theta \in \Theta} L(\theta), \text{ where } L(\theta) = \prod_{i=1}^n p_{\theta}(X_i).$$

The Maximum Likelihood Estimator (MLE)

Let X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 .

Statistical inference :

- propose a model $(P_{\theta}, \theta \in \Theta)$, assume $P_0 = P_{\theta_0}$.
- compute $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$.

Letting p_{θ} denote the density of P_{θ} , then

$$\hat{\theta}_n^{MLE} = \operatorname*{arg\,max}_{\theta \in \Theta} L(\theta), \text{ where } L(\theta) = \prod_{i=1}^n p_{\theta}(X_i).$$

Example : $P_{(m,\sigma)} = \mathcal{N}(m,\sigma^2)$ then $\hat{m} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{m})^2$.

MLE not unique / not consistent

Example :

$$p_{ heta}(x) = rac{\exp(-|x- heta|)}{2\sqrt{\pi|x- heta|}},$$

MLE not unique / not consistent

MLE fails in the presence of outliers

What is an outlier?

MLE fails in the presence of outliers

What is an outlier?

Huber proposed the contamination model : with probability ε , X_i is not drawn from P_{θ_0} but from Q that can be anything :

$$P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q.$$

MLE fails in the presence of outliers

What is an outlier?

Huber proposed the contamination model : with probability ε , X_i is not drawn from P_{θ_0} but from Q that can be anything :

$$P_0 = (1 - \varepsilon) P_{\theta_0} + \varepsilon Q.$$

Example : $P_{\theta} = Unif[0, \theta]$, then

MLE fails in the presence of outliers

What is an outlier?

Huber proposed the contamination model : with probability ε , X_i is not drawn from P_{θ_0} but from Q that can be anything :

$$P_0 = (1 - \varepsilon) P_{\theta_0} + \varepsilon Q.$$

Example : $P_{\theta} = Unif[0, \theta]$, then

$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1}_{\{0 \le X_i \le \theta\}} \Rightarrow \hat{\theta} = \max_{1 \le i \le n} X_i.$$

MLE fails in the presence of outliers

What is an outlier?

Huber proposed the contamination model : with probability ε , X_i is not drawn from P_{θ_0} but from Q that can be anything :

$$P_0 = (1 - \varepsilon) P_{\theta_0} + \varepsilon Q.$$

Example : $P_{\theta} = Unif[0, \theta]$, then

$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1}_{\{0 \le X_i \le \theta\}} \Rightarrow \hat{\theta} = \max_{1 \le i \le n} X_i.$$

In the case of the following contamination, the MLE is extremely far from the truth :

$$P_0 = (1 - \varepsilon).\mathcal{U}$$
nif $[0, 1] + \varepsilon.\mathcal{N}(10^{10}, 1)...$

Some examples

Yatracos' skeleton estimate $\hat{\theta}_n^Y$:

$$\mathbb{E}\left[d_{TV}(P_{\hat{\theta}_{n}^{Y}},P_{0})\right] \leq 3d_{TV}(P_{0},P_{\theta_{0}}) + C.\sqrt{\frac{\dim(\Theta)}{n}}$$

where

$$d_{TV}(P,Q) = \sup_{E} |P(E) - Q(E)|.$$

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's entropy. *Annals of Statistics*.

Some examples

Yatracos' skeleton estimate $\hat{\theta}_n^Y$:

$$\mathbb{E}\left[d_{TV}(P_{\hat{\theta}_{n}^{Y}},P_{0})\right] \leq 3d_{TV}(P_{0},P_{\theta_{0}}) + C.\sqrt{\frac{\dim(\Theta)}{n}}$$

where

$$d_{TV}(P,Q) = \sup_{E} |P(E) - Q(E)|.$$

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's entropy. *Annals of Statistics*.

More recent work with the Hellinger distance :

Baraud, Y., Birgé, L., & Sart, M. (2017). A new method for estimation and model selection : ρ -estimation. *Inventiones mathematicae*.

Pierre Alquier, RIKEN AIP Parametric estimation via MMD optimization

Problem with the aforementioned estimators : they cannot be computed in practice.

Problem with the aforementioned estimators : they cannot be computed in practice.

Additional requirement : an estimator must be computable !!!

Overview of the talk

Estimation via MMD optimization

- Definition of the estimator
- Basic properties
- References and further works
- 2 Robustness to outliers and to dependence
 - Robustness to outliers and to dependence
 - Example : estimation of the mean of a Gaussian
 - Robustness to dependence

3 Further topics

- Semi-parametric models
- Copulas
- MMD-Bayes

Definition of the estimator Basic properties References and further works

1 Estimation via MMD optimization

- Definition of the estimator
- Basic properties
- References and further works

Production 2 Robustness to outliers and to dependence

- Robustness to outliers and to dependence
- Example : estimation of the mean of a Gaussian
- Robustness to dependence

B) Further topics

- Semi-parametric models
- Copulas
- MMD-Bayes

Definition of the estimator Basic properties References and further works

Reminder : kernels

Let \mathcal{H} be a Hilbert space and any continuous function $\Phi: \mathcal{X} \to \mathcal{H}$. The function

$$\mathcal{K}(x,y) = \langle \Phi(x), \Phi(y)
angle_{\mathcal{H}}$$

is called a kernel.

Definition of the estimator Basic properties References and further works

Reminder : kernels

Let \mathcal{H} be a Hilbert space and any continuous function $\Phi: \mathcal{X} \to \mathcal{H}$. The function

$$\mathcal{K}(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$$

is called a kernel. Conversely :

Mercer's theorem

Let K(x, y) be a continuous function such that for any $(x_1, \ldots, x_n) \in \mathcal{X}^n$ and $(c_1, \ldots, c_n) \neq (0, \ldots, 0) \in \mathbb{R}^n$,

$$\sum_{i=1}^n\sum_{j=1}^nc_ic_jK(x_i,x_j)>0,$$

then there is \mathcal{H} and Φ such that $K(x, y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$.

Definition of the estimator Basic properties References and further works

Reminder : MMD

Assume that the kernel is bounded : $0 \le K(x, y) \le 1$.

Definition of the estimator Basic properties References and further works

Reminder : MMD

Assume that the kernel is bounded : $0 \le K(x, y) \le 1$.

Consider, for any probability distribution P on \mathcal{X} , $\mu_{\mathcal{K}}(P) = \mathbb{E}_{X \sim P} [\Phi(X)].$

Definition of the estimator Basic properties References and further works

Reminder : MMD

Assume that the kernel is bounded : $0 \le K(x, y) \le 1$.

Consider, for any probability distribution P on \mathcal{X} ,

$$\mu_{K}(P) = \mathbb{E}_{X \sim P}\left[\Phi(x)\right].$$

The kernel K is said to be characteristic if

$$\mu_{\mathcal{K}}(\mathcal{P}) = \mu_{\mathcal{K}}(\mathcal{Q}) \Rightarrow \mathcal{P} = \mathcal{Q}.$$

Definition of the estimator Basic properties References and further works

Reminder : MMD

Assume that the kernel is bounded : $0 \le K(x, y) \le 1$.

Consider, for any probability distribution P on \mathcal{X} ,

$$\mu_{K}(P) = \mathbb{E}_{X \sim P}\left[\Phi(x)\right].$$

The kernel K is said to be characteristic if

$$\mu_{\mathcal{K}}(\mathcal{P}) = \mu_{\mathcal{K}}(\mathcal{Q}) \Rightarrow \mathcal{P} = \mathcal{Q}.$$

Theorem $\mathcal{K}(x, y) = \exp(-\frac{\|x-y\|^2}{\gamma^2})$ and $\exp(-\frac{\|x-y\|}{\gamma})$ are char. kernels.

Definition of the estimator Basic properties References and further works

Reminder : MMD

Assume that the kernel is bounded : $0 \le K(x, y) \le 1$.

Consider, for any probability distribution P on \mathcal{X} ,

$$\mu_{K}(P) = \mathbb{E}_{X \sim P}\left[\Phi(x)\right].$$

The kernel K is said to be characteristic if

$$\mu_{\mathcal{K}}(\mathcal{P}) = \mu_{\mathcal{K}}(\mathcal{Q}) \Rightarrow \mathcal{P} = \mathcal{Q}.$$

Theorem

$$\mathcal{K}(x,y) = \exp(-rac{\|x-y\|^2}{\gamma^2})$$
 and $\exp(-rac{\|x-y\|}{\gamma})$ are char. kernels.

Definition : the MMD distance

$$\mathbb{D}_{\mathcal{K}}(\mathcal{P},\mathcal{Q}) = \left\| \mu_{\mathcal{K}}(\mathcal{P}) - \mu_{\mathcal{K}}(\mathcal{Q}) \right\|_{\mathcal{H}}.$$

Definition of the estimator Basic properties References and further works

MMD-based estimator

Reminder of the context :

- X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 ,
- **2** model $(P_{\theta}, \theta \in \Theta)$.

Definition of the estimator Basic properties References and further works

MMD-based estimator

Reminder of the context :

• X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 ,

2 model (
$$P_{\theta}, \theta \in \Theta$$
).

Definition - MMD based estimator

$$\hat{\theta}_n^{MMD} = \argmin_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}} \left(P_{\theta}, \hat{P}_n \right) \text{ where } \hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

Definition of the estimator Basic properties References and further works

A bound in expectation

Theorem

For any P_0 , when X_1, \ldots, X_n are i.i.d from P_0 ,

$$\mathbb{E}\left[\mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}}, P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{K}(P_{\theta}, P_{0}) + \frac{2}{\sqrt{n}}$$

Definition of the estimator Basic properties References and further works

Proof of the theorem : preliminary lemma

Lemma

For any P_0 , when X_1, \ldots, X_n are i.i.d from P_0 ,

$$\mathbb{E}\left[\mathbb{D}_{K}\left(\hat{P}_{n},P^{0}\right)\right]\leq\frac{1}{\sqrt{n}}.$$

Definition of the estimator Basic properties References and further works

Proof of the theorem : preliminary lemma

Lemma

For any P_0 , when X_1, \ldots, X_n are i.i.d from P_0 ,

$$\mathbb{E}\left[\mathbb{D}_{K}\left(\hat{P}_{n},P^{0}\right)\right]\leq\frac{1}{\sqrt{n}}.$$

$$\begin{split} \left\{ \mathbb{E} \left[\mathbb{D}_{\kappa} \left(\hat{P}_{n}, P^{0} \right) \right] \right\}^{2} &\leq \mathbb{E} \left[\mathbb{D}_{\kappa}^{2} \left(\hat{P}_{n}, P^{0} \right) \right] \\ &= \mathbb{E} \left[\left\| (1/n) \sum (\mu(\delta_{X_{i}}) - \mu(P_{0})) \right\|_{\mathcal{H}}^{2} \right] \\ &= (1/n) \mathbb{E} \left[\left\| \mu(\delta_{X_{1}}) - \mu(P_{0}) \right\|_{\mathcal{H}}^{2} \right] \\ &\leq 1/n. \end{split}$$

Definition of the estimator Basic properties References and further works

Proof of the theorem

$$\begin{aligned} \forall \theta, \ \mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}}, P^{0}\right) &\leq \mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}}, \hat{P}_{n}\right) + \mathbb{D}_{K}\left(\hat{P}_{n}, P^{0}\right) \\ &\leq \mathbb{D}_{K}\left(P_{\theta}, \hat{P}_{n}\right) + \mathbb{D}_{K}\left(\hat{P}_{n}, P^{0}\right) \\ &\leq \mathbb{D}_{K}\left(P_{\theta}, P^{0}\right) + 2\mathbb{D}_{K}\left(\hat{P}_{n}, P^{0}\right) \end{aligned}$$

Definition of the estimator Basic properties References and further works

Proof of the theorem

$$\begin{aligned} \forall \theta, \ \mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}}, P^{0}\right) &\leq \mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}}, \hat{P}_{n}\right) + \mathbb{D}_{K}\left(\hat{P}_{n}, P^{0}\right) \\ &\leq \mathbb{D}_{K}\left(P_{\theta}, \hat{P}_{n}\right) + \mathbb{D}_{K}\left(\hat{P}_{n}, P^{0}\right) \\ &\leq \mathbb{D}_{K}\left(P_{\theta}, P^{0}\right) + 2\mathbb{D}_{K}\left(\hat{P}_{n}, P^{0}\right) \end{aligned}$$

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(P_{\hat{\theta}_{n}^{MMD}},P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}}(P_{\theta},P_{0}) + \frac{2}{\sqrt{n}}.$$

Definition of the estimator Basic properties References and further works

A bound in probability

We can replace the control on the expectation of $\mathbb{D}_{\mathcal{K}}\left(\hat{P}_{n}, P^{0}\right)$ by a bound that holds with large probability, thanks to McDiarmid's inequality.

Definition of the estimator Basic properties References and further works

A bound in probability

We can replace the control on the expectation of $\mathbb{D}_{\mathcal{K}}\left(\hat{P}_{n}, P^{0}\right)$ by a bound that holds with large probability, thanks to McDiarmid's inequality.

Theorem

For any P_0 , when X_1, \ldots, X_n are i.i.d from P_0 , with probability at least $1 - \delta$,

$$\mathbb{D}_{K}\left(P_{\hat{\theta}_{n}}, P^{0}\right) \leq \inf_{\theta \in \Theta} \mathbb{D}_{K}\left(P_{\theta}, P^{0}\right) + \frac{2 + 2\sqrt{2\log\left(\frac{1}{\delta}\right)}}{\sqrt{n}}.$$
Definition of the estimator Basic properties References and further works

How to compute $\hat{\theta}_n^{MMD}$?

We actually have

$$\mathbb{D}^2_{\mathcal{K}}(P_ heta, \hat{P}_n) = \mathbb{E}_{X, X' \sim P_ heta}[\mathcal{K}(X, X')] - rac{2}{n} \sum_{i=1}^n \mathbb{E}_{X \sim P_ heta}[\mathcal{K}(X_i, X)]
onumber \ + rac{1}{n^2} \sum_{1 \leq i,j \leq n} \mathcal{K}(X_i, X_j)$$

Definition of the estimator Basic properties References and further works

How to compute
$$\hat{ heta}_n^{MMD}$$
 ?

We actually have

$$\begin{split} \mathbb{D}_{K}^{2}(P_{\theta},\hat{P}_{n}) &= \mathbb{E}_{X,X'\sim P_{\theta}}[K(X,X')] - \frac{2}{n}\sum_{i=1}^{n}\mathbb{E}_{X\sim P_{\theta}}[K(X_{i},X)] \\ &+ \frac{1}{n^{2}}\sum_{1 \leq i,j \leq n}K(X_{i},X_{j}) \end{split}$$
and so

$$egin{aligned} &
abla_{ heta} \mathbb{D}^2_{K}(P_{ heta}, \hat{P}_n) \ &= 2\mathbb{E}_{X, X' \sim P_{ heta}} \left\{ \left[\mathcal{K}(X, X') - rac{1}{n} \sum_{i=1}^n \mathcal{K}(X_i, X)
ight]
abla_{ heta} [\log p_{ heta}(X)]
ight\} \end{aligned}$$

that can be approximated by sampling from P_{θ} .

Definition of the estimator Basic properties References and further works

Short bibliography

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. UAI 2015.

define the estimator and used it to train GANs.

Definition of the estimator Basic properties References and further works

Short bibliography

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. UAI 2015.

define the estimator and used it to train GANs.

Definition of the estimator Basic properties References and further works

Short bibliography

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. UAI 2015.

define the estimator and used it to train GANs.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative Models with Maximum Mean Discrepancy. *Preprint arXiv* :1906.05944.

Definition of the estimator Basic properties References and further works

Short bibliography

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. UAI 2015.

define the estimator and used it to train GANs.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative Models with Maximum Mean Discrepancy. *Preprint arXiv* :1906.05944.

provided the first theoretical study : asymptotic distribution.

Pierre Alquier, RIKEN AIP

Parametric estimation via MMD optimization

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Estimation via MMD optimization

- Definition of the estimator
- Basic properties
- References and further works

2 Robustness to outliers and to dependence

- Robustness to outliers and to dependence
- Example : estimation of the mean of a Gaussian
- Robustness to dependence

B Further topics

- Semi-parametric models
- Copulas
- MMD-Bayes

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Huber contamination model

In this section, I will present the results of the following preprint.

Chérief-Abdellatif, B.-E. and Alquier, P. (2019). Finite Sample Properties of Parametric MMD Estimation : Robustness to Misspecification and Dependence. *Preprint arxiv* :1912.05737.

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Huber contamination model

Reminder

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(P_{\hat{\theta}_{n}^{MMD}},P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}}(P_{\theta},P_{0}) + \frac{2}{\sqrt{n}}.$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Huber contamination model

Reminder

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(P_{\hat{\theta}_{n}^{MMD}},P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}}(P_{\theta},P_{0}) + \frac{2}{\sqrt{n}}.$$

Huber contamination model : $P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q$.

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Huber contamination model

Reminder

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(P_{\hat{\theta}_{n}^{MMD}}, P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}}(P_{\theta}, P_{0}) + \frac{2}{\sqrt{n}}$$

Huber contamination model : $P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q$.

$$egin{aligned} \mathbb{D}_{\mathcal{K}}(P_{ heta_0},P_0) &= \|P_{ heta_0} - [(1-arepsilon)P_{ heta_0} + arepsilon Q]\|_{\mathcal{H}} \ &\leq arepsilon \|P_{ heta_0}\|_{\mathcal{H}} + arepsilon \|Q\|_{\mathcal{H}} \ &= 2arepsilon. \end{aligned}$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Huber contamination model

Reminder

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(P_{\hat{\theta}_{n}^{MMD}},P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}}(P_{\theta},P_{0}) + \frac{2}{\sqrt{n}}.$$

Huber contamination model : $P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q$.

 $\mathbb{D}_{\mathcal{K}}(P_{\theta_0}, P_0) \leq 2\varepsilon.$

Corollary

When X_1, \ldots, X_n are i.i.d from $(1 - \varepsilon)P_{\theta_0} + \varepsilon Q$,

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(P_{\hat{\theta}_{n}^{MMD}}, P_{\theta_{0}}\right)\right] \leq 4\varepsilon + \frac{2}{\sqrt{n}}$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Example : Gaussian mean estimation

Example : the model is given by $p_{\theta} = \mathcal{N}(\theta, \sigma^2 I)$ for $\theta \in \mathbb{R}^d$.

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

.

Example : Gaussian mean estimation

Example : the model is given by $p_{\theta} = \mathcal{N}(\theta, \sigma^2 I)$ for $\theta \in \mathbb{R}^d$.

Using a Gaussian kernel $K(x, y) = \exp(-||x - y^2||/\gamma^2)$, from the previous theorem and from the equality

$$\mathbb{D}_{K}^{2}\left(P_{\theta}, P_{\theta'}\right) = 2\left(\frac{\gamma^{2}}{4\sigma^{2} + \gamma^{2}}\right)^{\frac{d}{2}} \left[1 - \exp\left(-\frac{\|\theta - \theta'\|^{2}}{4\sigma^{2} + \gamma^{2}}\right)\right]$$

we obtain

$$\begin{split} \mathbb{E}\left[\|\hat{\theta}_{n}^{MMD} - \theta_{0}\|^{2}\right] \\ \leq -(4\sigma^{2} + \gamma^{2})\log\left[1 - 4\left(\frac{1}{n} + \varepsilon^{2}\right)\left(\frac{4\sigma^{2} + \gamma^{2}}{\gamma^{2}}\right)^{\frac{d}{2}}\right] \end{split}$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

.

Example : Gaussian mean estimation

Example : the model is given by $p_{\theta} = \mathcal{N}(\theta, \sigma^2 I)$ for $\theta \in \mathbb{R}^d$.

Using a Gaussian kernel $K(x, y) = \exp(-||x - y^2||/\gamma^2)$, from the previous theorem and from the equality

$$\mathbb{D}_{\mathcal{K}}^{2}\left(P_{\theta}, P_{\theta'}\right) = 2\left(\frac{\gamma^{2}}{4\sigma^{2} + \gamma^{2}}\right)^{\frac{d}{2}} \left[1 - \exp\left(-\frac{\|\theta - \theta'\|^{2}}{4\sigma^{2} + \gamma^{2}}\right)\right]$$

we obtain

$$\mathbb{E}\left[\|\hat{\theta}_{n}^{MMD} - \theta_{0}\|^{2}\right] \text{ take } \gamma = 2d\sigma^{2}$$

$$\leq -(4\sigma^{2} + \gamma^{2})\log\left[1 - 4\left(\frac{1}{n} + \varepsilon^{2}\right)\left(\frac{4\sigma^{2} + \gamma^{2}}{\gamma^{2}}\right)^{\frac{d}{2}}\right]$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Example : Gaussian mean estimation

Example : the model is given by $p_{\theta} = \mathcal{N}(\theta, \sigma^2 I)$ for $\theta \in \mathbb{R}^d$.

Using a Gaussian kernel $K(x, y) = \exp(-||x - y^2||/\gamma^2)$, from the previous theorem and from the equality

$$\mathbb{D}_{K}^{2}\left(P_{\theta}, P_{\theta'}\right) = 2\left(\frac{\gamma^{2}}{4\sigma^{2} + \gamma^{2}}\right)^{\frac{d}{2}} \left[1 - \exp\left(-\frac{\|\theta - \theta'\|^{2}}{4\sigma^{2} + \gamma^{2}}\right)\right]$$

we obtain

$$\mathbb{E}\left[\|\hat{ heta}_n^{MMD}- heta_0\|^2
ight]\lesssim d\sigma^2\left(rac{1}{n}+arepsilon^2
ight).$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Example : Gaussian mean estimation, simulations

Model : $\mathcal{N}(\theta, 1)$, and X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the experiment 200 times.

	$\hat{\theta}_n^{MLE}$	$\hat{\theta}_n^{MMD}$
mean absolute error	0.0722	0.0838

Example : Gaussian mean estimation, simulations

Model : $\mathcal{N}(\theta, 1)$, and X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the experiment 200 times.

	$\hat{\theta}_n^{MLE}$	$\hat{\theta}_n^{MMD}$
mean absolute error	0.0722	0.0838

Now, $\varepsilon = 2\%$ of the observations drawn from a Cauchy.

mean absolute error 0.2349 0.0953

Example : Gaussian mean estimation, simulations

Model : $\mathcal{N}(\theta, 1)$, and X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the experiment 200 times.

	$\hat{\theta}_n^{MLE}$	$\hat{\theta}_n^{MMD}$
mean absolute error	0.0722	0.0838

Now, $\varepsilon = 2\%$ of the observations drawn from a Cauchy.

mean absolute error 0.2349 0.0953

Now, $\varepsilon = 1\%$ are replaced by 1,000.

mean absolute error 10.018 0.0903

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

And now, non-independent observations

Lemma

When X_1, \ldots, X_n are identically distributed from P_0 ,

$$\mathbb{E}\left[\mathbb{D}_{K}\left(\hat{P}_{n},P^{0}\right)\right]\leq ?$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

And now, non-independent observations

Lemma

When X_1, \ldots, X_n are identically distributed from P_0 ,

 $\mathbb{E}\left[\mathbb{D}_{K}\left(\hat{P}_{n},P^{0}\right)\right]\leq ?$

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}^{2}\left(\hat{P}_{n},P^{0}\right)\right]$$

$$=\mathbb{E}\left[\left\|\left(1/n\right)\sum\left(\mu(\delta_{X_{i}})-\mu(P_{0})\right)\right\|_{\mathcal{H}}^{2}\right]$$

$$=\frac{1}{n}+\frac{2}{n^{2}}\sum_{1\leq i< j\leq n}\mathbb{E}\left\langle\mu(\delta_{X_{i}})-\mu(P_{0}),\mu(\delta_{X_{j}})-\mu(P_{0})\right\rangle_{\mathcal{H}}$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Mesure of dependence via covariance in \mathcal{H}

Definition

When $(X_1, \ldots, X_n, \ldots)$ is a stationary process with marginal distribution P_0 , we put :

$$\varrho_h = \left| \mathbb{E} \left\langle \mu(\delta_{X_{t+h}}) - \mu(P_0), \mu(\delta_{X_t}) - \mu(P_0) \right\rangle_{\mathcal{H}} \right|.$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Mesure of dependence via covariance in \mathcal{H}

Definition

When $(X_1, \ldots, X_n, \ldots)$ is a stationary process with marginal distribution P_0 , we put :

$$\varrho_{h} = \left| \mathbb{E} \left\langle \mu(\delta_{X_{t+h}}) - \mu(P_{0}), \mu(\delta_{X_{t}}) - \mu(P_{0}) \right\rangle_{\mathcal{H}} \right|.$$

Lemma - dependent case

When X_1, \ldots, X_n are identically distributed from P_0 ,

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(\hat{P}_{n}, P^{0}\right)\right] \leq \frac{1}{n}\left[1 + \sum_{h=1}^{n} \varrho_{h}\right]$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Mesure of dependence via covariance in \mathcal{H}

Theorem - dependent case

When $(X_1, \ldots, X_n, \ldots)$ is a stationary process with marginal distribution P_0

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(P_{\hat{\theta}_{n}^{MMD}}, P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}}(P_{\theta}, P_{0}) + \frac{2 + 2\sum_{h=1}^{n} \varrho_{h}}{\sqrt{n}}$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Mesure of dependence via covariance in \mathcal{H}

Theorem - dependent case

When $(X_1, \ldots, X_n, \ldots)$ is a stationary process with marginal distribution P_0

$$\mathbb{E}\left[\mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}},P_{0}\right)\right] \leq \inf_{\theta \in \Theta}\mathbb{D}_{K}(P_{\theta},P_{0}) + \frac{2+2\sum_{h=1}^{n}\varrho_{h}}{\sqrt{n}}$$

1 assume that $\sum_{h=1}^{\infty} \varrho_h = \Sigma < +\infty$ then

$$\mathbb{E}\left[\mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}}, P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{K}(P_{\theta}, P_{0}) + \frac{2 + 2\Sigma}{\sqrt{n}}$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

Mesure of dependence via covariance in \mathcal{H}

Theorem - dependent case

When $(X_1, \ldots, X_n, \ldots)$ is a stationary process with marginal distribution P_0

$$\mathbb{E}\left[\mathbb{D}_{K}\left(P_{\hat{\theta}_{n}^{MMD}}, P_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{K}(P_{\theta}, P_{0}) + \frac{2 + 2\sum_{h=1}^{n} \varrho_{h}}{\sqrt{n}}$$

1 assume that $\sum_{h=1}^{\infty} \varrho_h = \Sigma < +\infty$ then

$$\mathbb{E}\left[\mathbb{D}_{\mathcal{K}}\left(\mathsf{P}_{\hat{\theta}_{n}^{MMD}},\mathsf{P}_{0}\right)\right] \leq \inf_{\theta \in \Theta} \mathbb{D}_{\mathcal{K}}(\mathsf{P}_{\theta},\mathsf{P}_{0}) + \frac{2+2\Sigma}{\sqrt{n}}$$

we also have a bound in probability, based on Rio's version of Hoeffding's inequality; it requires more assumptions.

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

An example : auto-regressive processes

Proposition

Assume that X_t takes values in \mathbb{R}^d and that K(x, y) = F(||x - y||) where F is an *L*-Lipschitz function. Assume that

$$X_{t+1} = AX_t + \varepsilon_{t+1}$$

where the (ε_t) are i.i.d with $\mathbb{E} \|\varepsilon_0\| < \infty$, and A is a matrix with $\|A\| = \sup_{\|x\|=1} \|Ax\| < 1$.

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

An example : auto-regressive processes

Proposition

Assume that X_t takes values in \mathbb{R}^d and that K(x, y) = F(||x - y||) where F is an L-Lipschitz function. Assume that

$$X_{t+1} = AX_t + \varepsilon_{t+1}$$

where the (ε_t) are i.i.d with $\mathbb{E} \|\varepsilon_0\| < \infty$, and A is a matrix with $\|A\| = \sup_{\|x\|=1} \|Ax\| < 1$. Then

$$\varrho_t \leq \|A\|^t \frac{2L\mathbb{E}\|\varepsilon_0\|}{1-\|A\|} \text{ and } \Sigma = \sum_{t=1}^{\infty} \varrho_t = \frac{2\|A\|L\mathbb{E}\|\varepsilon_0\|}{(1-\|A\|)^2}.$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

A non-mixing process with $\Sigma < +\infty$

Example : consider $X_0 \sim \mathcal{U}([0,1])$, η_t i.i.d $\mathcal{B}e(1/2)$ and

$$X_{t+1} = \frac{X_t + \eta_{t+1}}{2}$$

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

A non-mixing process with $\Sigma < +\infty$

Example : consider $X_0 \sim \mathcal{U}([0,1])$, η_t i.i.d $\mathcal{B}e(1/2)$ and

$$X_{t+1} = \frac{X_t + \eta_{t+1}}{2}$$

It satisfies the assumptions of the previous proposition, we have $\varrho_t \leq L/2^t$ and $\Sigma = 2L$.

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

A non-mixing process with $\Sigma < +\infty$

Example : consider $X_0 \sim \mathcal{U}([0,1])$, η_t i.i.d $\mathcal{B}e(1/2)$ and

$$X_{t+1} = \frac{X_t + \eta_{t+1}}{2}$$

It satisfies the assumptions of the previous proposition, we have $\varrho_t \leq L/2^t$ and $\Sigma = 2L$.

Note however that this process is known to be non-mixing.

Robustness to outliers and to dependence Example : estimation of the mean of a Gaussian Robustness to dependence

A non-mixing process with $\Sigma < +\infty$

Example : consider $X_0 \sim \mathcal{U}([0,1])$, η_t i.i.d $\mathcal{B}e(1/2)$ and

$$X_{t+1} = \frac{X_t + \eta_{t+1}}{2}$$

It satisfies the assumptions of the previous proposition, we have $\varrho_t \leq L/2^t$ and $\Sigma = 2L$.

Note however that this process is known to be non-mixing.

More generally, we prove the following result :

Proposition

Under some (non-restrictive) assumption on the kernel K,

$$\varrho_t \leq c_K . \beta_t$$
 (the β -mixing coef.)

Semi-parametric models Copulas MMD-Bayes

Estimation via MMD optimization

- Definition of the estimator
- Basic properties
- References and further works

Production is a straight to be a stra

- Robustness to outliers and to dependence
- Example : estimation of the mean of a Gaussian
- Robustness to dependence

3 Further topics

- Semi-parametric models
- Copulas
- MMD-Bayes

Semi-parametric models Copulas MMD-Bayes

Problem with semi-parametric models

The method, as explained so far, must describe completely the distribution of the observations.

Semi-parametric models Copulas MMD-Bayes

Problem with semi-parametric models

The method, as explained so far, must describe completely the distribution of the observations. But this is often not the case in practice !

Semi-parametric models Copulas MMD-Bayes

Problem with semi-parametric models

The method, as explained so far, must describe completely the distribution of the observations. But this is often not the case in practice! For example

 in regression, we observe (X, Y) and we only want to modelize P_{Y|X}, but not P_X.
Problem with semi-parametric models

The method, as explained so far, must describe completely the distribution of the observations. But this is often not the case in practice ! For example

- in regression, we observe (X, Y) and we only want to modelize P_{Y|X}, but not P_X.
- in copulas, we observe (V₁, V₂) and we want to modelize their copula, that is the c.d.f of (F_{V1}(V₁), F_{V2}(V₂)) on [0, 1]² but we are not interested in F_{V1} nor F_{V2}.

Problem with semi-parametric models

The method, as explained so far, must describe completely the distribution of the observations. But this is often not the case in practice! For example

- in regression, we observe (X, Y) and we only want to modelize P_{Y|X}, but not P_X.
- in copulas, we observe (V₁, V₂) and we want to modelize their copula, that is the c.d.f of (F_{V1}(V₁), F_{V2}(V₂)) on [0, 1]² but we are not interested in F_{V1} nor F_{V2}.

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via Maximum Mean Discrepancy. *Preprint arxiv :2006.00840*.

Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. (2020). Estimation of copulas via Maximum Mean Discrepancy. *Preprint arXiv* : 2010.00408.

Semi-parametric models Copulas MMD-Bayes

Regression with MMD

$$P^{0}_{(X,Y)} = P^{0}_{Y|X} P^{0}_{X}$$

Semi-parametric models Copulas MMD-Bayes

Regression with MMD

$$P^0_{(X,Y)} = P^0_{Y|X} P^0_X$$

 $P_{Y|X}^{\mathbf{0}}$ estimated by $Q_{g(\hat{\mu},X)}$

 $\mathsf{Ex}: \, \mathit{Q}_{g(\mu, X)} = \mathcal{N}(\mu^T X, \mathbf{1}).$

Semi-parametric models Copulas MMD-Bayes

Regression with MMD

$$P^0_{(X,Y)} = P^0_{Y|X} P^0_X$$

 $P_{Y|X}^{\mathbf{0}}$ estimated by $Q_{g(\hat{\mu},X)}$ Ex : $Q_{g(\mu,X)} = \mathcal{N}(\mu^T X, \mathbf{1}).$

$$P_X^{\mathbf{0}}$$
 estimated by $\hat{P}_X = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$.

Semi-parametric models Copulas MMD-Bayes

Regression with MMD

$$P^0_{(X,Y)} = P^0_{Y|X} P^0_X$$

$$\begin{split} & \mathcal{P}_{Y|X}^{\mathbf{0}} \text{ estimated by } \mathcal{Q}_{\mathcal{G}(\hat{\mu},X)} \\ & \mathsf{Ex}: \mathcal{Q}_{\mathcal{G}(\mu,X)} = \mathcal{N}(\mu^T X, \mathbf{1}). \end{split} \qquad \qquad \qquad \mathcal{P}_{X}^{\mathbf{0}} \text{ estimated by } \hat{\mathcal{P}}_{X} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}. \end{split}$$

Product kernel : $K((x, y), (x', y')) = K_X(x, x')K_Y(y, y')$.

Semi-parametric models Copulas MMD-Bayes

Regression with MMD

$$P^0_{(X,Y)} = P^0_{Y|X} P^0_X$$

$$\begin{split} & \mathcal{P}_{Y|X}^{\mathbf{0}} \text{ estimated by } \mathcal{Q}_{g(\hat{\mu},X)} \\ & \mathsf{E}_{X} : \mathcal{Q}_{g(\mu,X)} = \mathcal{N}(\mu^{\mathsf{T}}X,\mathbf{1}). \end{split} \qquad \qquad \qquad \mathcal{P}_{X}^{\mathbf{0}} \text{ estimated by } \hat{\mathcal{P}}_{X} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}. \end{split}$$

Product kernel : $K((x, y), (x', y')) = K_X(x, x')K_Y(y, y')$.

 $\mathbb{D}_{\mathcal{K}}(Q_{g(\hat{\mu},X)}\hat{P}_{X}, P^{0}_{Y|X}\hat{P}_{X}) \leq \dots \text{ straightforward } !$

Semi-parametric models Copulas MMD-Bayes

Regression with MMD

$$P^0_{(X,Y)} = P^0_{Y|X} P^0_X$$

$$\begin{split} & \mathcal{P}_{Y|X}^{\mathbf{0}} \text{ estimated by } \mathcal{Q}_{g(\hat{\mu},X)} \\ & \mathsf{Ex}: \, \mathcal{Q}_{g(\mu,X)} = \mathcal{N}(\mu^T X, \mathbf{1}). \end{split} \qquad \qquad \qquad \qquad \qquad \mathcal{P}_{X}^{\mathbf{0}} \text{ estimated by } \hat{\mathcal{P}}_{X} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}. \end{split}$$

Product kernel : $K((x, y), (x', y')) = K_X(x, x')K_Y(y, y')$.

 $\mathbb{D}_{\mathcal{K}}(Q_{g(\hat{\mu},X)}\hat{P}_{X}, P^{0}_{Y|X}\hat{P}_{X}) \leq \dots \text{ straightforward } !$

 $\mathbb{D}_{\mathcal{K}}(Q_{g(\hat{\mu},X)}P_X^0, P_{Y|X}^0P_X^0) \leq \dots \text{ quite difficult.}$

Semi-parametric models Copulas MMD-Bayes

Regression with MMD

$$P^0_{(X,Y)} = P^0_{Y|X} P^0_X$$

$$\begin{split} & \mathcal{P}_{Y|X}^{\mathbf{0}} \text{ estimated by } \mathcal{Q}_{g(\hat{\mu},X)} \\ & \mathsf{Ex}: \, \mathcal{Q}_{g(\mu,X)} = \mathcal{N}(\mu^T X, \mathbf{1}). \end{split} \qquad \qquad \qquad \qquad \mathcal{P}_{X}^{\mathbf{0}} \text{ estimated by } \hat{\mathcal{P}}_{X} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}. \end{split}$$

Product kernel : $K((x, y), (x', y')) = K_X(x, x')K_Y(y, y')$.

 $\mathbb{D}_{\mathcal{K}}(Q_{g(\hat{\mu},X)}\hat{P}_{X}, P^{0}_{Y|X}\hat{P}_{X}) \leq \dots \text{ straightforward } !$

 $\mathbb{D}_{\mathcal{K}}(Q_{g(\hat{\mu},X)}P^{0}_{X},P^{0}_{Y|X}P^{0}_{X}) \leq \dots \text{ quite difficult.}$

 $\mathsf{Requires}: f(x,y) \in \mathcal{H}_{\mathcal{K}} \Rightarrow \mathbb{E}_{Y \sim Q_{g(\theta,x)}}[f(x,Y)] \in \mathcal{H}_{\mathcal{K}_X}.$

Semi-parametric models Copulas MMD-Bayes

Estimation of copulas with MMD

Estimation of copulas : we observe $(V_{1,i}, V_{2,i})_{1 \le i \le n}$.

- estimate F_{V_1} by the empirical c.d.f \hat{F}_1 ,
- estimate F_{V_2} by the empirical c.d.f \hat{F}_2 ,
- standard MMD procedure with kernel K_U on

$$(U_{1,i}, U_{2,i}) = (\hat{F}_1(V_{1,i}), \hat{F}_2(V_{2,i})).$$

Semi-parametric models Copulas MMD-Bayes

Estimation of copulas with MMD

Estimation of copulas : we observe $(V_{1,i}, V_{2,i})_{1 \le i \le n}$.

- estimate F_{V_1} by the empirical c.d.f \hat{F}_1 ,
- estimate F_{V_2} by the empirical c.d.f \hat{F}_2 ,
- standard MMD procedure with kernel K_U on

$$(U_{1,i}, U_{2,i}) = (\hat{F}_1(V_{1,i}), \hat{F}_2(V_{2,i})).$$

Theorem

With probability larger than $1 - \delta - \nu \in (0, 1)$,

$$egin{aligned} \mathbb{D}_{\mathcal{K}_U}(\mathbb{P}_{\hat{ heta}_n},\mathbb{P}_0) &\leq \inf_{ heta\in\Theta} \mathbb{D}_{\mathcal{K}_U}(\mathbb{P}_ heta,\mathbb{P}_0) + \sqrt{rac{8}{n}} \left[1 + \sqrt{\log\left(rac{1}{\delta}
ight)}
ight] \ &+ \sqrt{rac{8}{n}} \|\partial^{(2)}\mathcal{K}_U\|_\infty \log\left(rac{2}{
u}
ight). \end{aligned}$$

Semi-parametric models Copulas MMD-Bayes

Estimation of copulas with MMD

Theorem

With probability larger than
$$1-\delta-
u\in(0,1)$$
,

$$\mathbb{D}_{\mathcal{K}_U}(\mathbb{P}_{\hat{ heta}_n}, \mathbb{P}_0) \leq \inf_{ heta \in \Theta} \mathbb{D}_{\mathcal{K}_U}(\mathbb{P}_{ heta}, \mathbb{P}_0) + \sqrt{\frac{8}{n}} \left[1 + \sqrt{\log\left(rac{1}{\delta}
ight)}
ight] + \sqrt{rac{8}{n} \|\partial^{(2)}\mathcal{K}_U\|_{\infty}\log\left(rac{2}{
u}
ight)}.$$

The paper also :

- studies the asymptotic normality of $\hat{\theta}_n$ under some assumptions on the model.
- introduces the R package MMDCopula

Semi-parametric models Copulas MMD-Bayes

The package MMDCopula

CRAN Mirrors What's new?

About R R.Homepage The R.Journal Software R.Sources R.Binaries Packages Other Documentation Manuals FAOs Contributed MMDCopula: Robust Estimation of Copulas by Maximum Mean Discrepancy

Provides functions for the robust estimation of parametric families of copulas using minimization of the Maximum Mean Discrepancy, following the article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020) article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020) article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020] article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020">article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020">article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020">article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020 article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020">article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020">article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2020</article Alquier, Chérief-Abdellatif, Derumigny and Alquier, Chérief-Abdellatif, Derumigny and Alquier, Chérief-Abdellatif, Derumigny and Alquier, Derumigny

version:	0.1.0
Depends:	R (≥ 3.6.0)
Imports:	VineCopula, cubature, pcaPP, randtoolbox
Suggests:	knitr, markdown
Published:	2020-10-13
Author:	Alexis Derumigny 🧿 [aut, cre], Pierre Alquier 💿 [aut], Jean-David Fermanian 💿 [aut], Badr-Eddine Chérief-Abdellatif [aut]
Maintainer:	Alexis Derumigny <a.f.f.derumigny at="" utwente.nl=""></a.f.f.derumigny>
BugReports:	https://github.com/AlexisDerumigny/MMDCopula/issues
License:	GPL-3
NeedsCompilation:	no
Materials:	README NEWS
CRAN checks:	MMDCopula results
Downloads:	
Reference manual:	MMDCopula pdf
Vignettes:	The MMD copula package: robust estimation of parametric copula models by MMD minimization
Package source:	MMDCopula 0.1.0.tar.gz
Windows binaries:	r-devel: MMDCopula 0.1.0.zip, nrelease: MMDCopula 0.1.0.zip, noldrel: MMDCopula 0.1.0.zip
macOS binaries:	r-release: MMDCopula_0.1.0.tgz, r-oldrel: MMDCopula_0.1.0.tgz
Linking	
camany.	
Please use the can	onical form https://CRAN.R-project.org/package=MMDCopula to link to this page.

Uses a stochastic gradient algorithm to compute the MMD estimator of the parameter(s) :

- of the main copulas models : Gaussian, Frank, Clayton, Gumbel, Student, etc.
 - 2 using various kernels : Gaussian, Laplace, etc.

Semi-parametric models Copulas MMD-Bayes

Example : Gaussian copulas

Semi-parametric models Copulas MMD-Bayes

Example : other models

Semi-parametric models Copulas MMD-Bayes

We also studied a "pseudo-Bayesian" version of the estimator :

$$p(heta|X_1,\ldots,X_n) \propto \exp\left(-\beta \mathbb{D}_K^2\left(P_{ heta},\hat{P}_n
ight)
ight) \pi(heta).$$

Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes : Robust Bayesian Estimation via Maximum Mean Discrepancy. *Proceedings of AABI*.

Estimation via MMD optimization	Semi-parametric models
Robustness to outliers and to dependence	Copulas
Further topics	MMD-Bayes

Thank you!