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The Maximum Likelihood Estimator (MLE)
Let X1, . . . ,Xn be i.i.d in X from a probability distribution P0.

Statistical inference :
propose a model (Pθ, θ ∈ Θ), assume P0 = Pθ0 .
compute θ̂n = θ̂n(X1, . . . ,Xn).

Letting pθ denote the density of Pθ, then

θ̂MLE
n = arg max

θ∈Θ
L(θ), where L(θ) =

n∏
i=1

pθ(Xi).

Example : P(m,σ) = N (m, σ2) then

m̂ =
1
n

n∑
i=1

Xi and σ̂2 =
1
n

n∑
i=1

(Xi − m̂)2.
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MLE not unique / not consistent

Example :

pθ(x) =
exp(−|x − θ|)
2
√
π|x − θ|

,

L(θ) =
exp (−

∑n
i=1 |Xi − θ|)

(2
√
π)n
∏n

i=1

√
|Xi − θ|

.
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MLE fails in the presence of outliers
What is an outlier ?

Huber proposed the contamination model : with probability ε,
Xi is not drawn from Pθ0 but from Q that can be anything :

P0 = (1− ε)Pθ0 + εQ.

Example : Pθ = Unif [0, θ], then

L(θ) =
1
θn

n∏
i=1

1{0≤Xi≤θ} ⇒ θ̂ = max
1≤i≤n

Xi .

In the case of the following contamination, the MLE is
extremely far from the truth :

P0 = (1− ε).Unif [0, 1] + ε.N (1010, 1)...
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Some examples
Yatracos’ skeleton estimate θ̂Yn :

E
[
dTV (Pθ̂Yn ,P0)

]
≤ 3dTV (P0,Pθ0) + C .

√
dim(Θ)

n

where
dTV (P ,Q) = sup

E
|P(E )− Q(E )|.

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov’s
entropy. Annals of Statistics.

More recent work with the Hellinger distance :

Baraud, Y., Birgé, L., & Sart, M. (2017). A new method for estimation and model selection :
ρ-estimation. Inventiones mathematicae.
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But...

Problem with the aforementioned estimators : they cannot be
computed in practice.

Additional requirement : an estimator must be computable ! ! !
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Overview of the talk

1 Estimation via MMD optimization
Definition of the estimator
Basic properties
References and further works

2 Robustness to outliers and to dependence
Robustness to outliers and to dependence
Example : estimation of the mean of a Gaussian
Robustness to dependence

3 Further topics
Semi-parametric models
Copulas
MMD-Bayes
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Reminder : kernels
Let H be a Hilbert space and any continuous function
Φ : X → H. The function

K (x , y) = 〈Φ(x),Φ(y)〉H
is called a kernel.

Conversely :

Mercer’s theorem
Let K (x , y) be a continuous function such that for any
(x1, . . . , xn) ∈ X n and (c1, . . . , cn) 6= (0, . . . , 0) ∈ Rn,

n∑
i=1

n∑
j=1

cicjK (xi , xj) > 0,

then there is H and Φ such that K (x , y) = 〈Φ(x),Φ(y)〉H.
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Reminder : MMD
Assume that the kernel is bounded : 0 ≤ K (x , y) ≤ 1.

Consider, for any probability distribution P on X ,
µK (P) = EX∼P [Φ(x)] .

The kernel K is said to be characteristic if

µK (P) = µK (Q)⇒ P = Q.

Theorem

K (x , y) = exp(−‖x−y‖
2

γ2
) and exp(−‖x−y‖

γ
) are char. kernels.

Definition : the MMD distance

DK (P ,Q) = ‖µK (P)− µK (Q)‖H .
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MMD-based estimator

Reminder of the context :
1 X1, . . . ,Xn be i.i.d in X from a probability distribution P0,
2 model (Pθ, θ ∈ Θ).

Definition - MMD based estimator

θ̂MMD
n = arg min

θ∈Θ
DK

(
Pθ, P̂n

)
where P̂n =

1
n

n∑
i=1

δXi
.
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A bound in expectation

Theorem
For any P0, when X1, . . . ,Xn are i.i.d from P0,

E
[
DK

(
Pθ̂MMD

n
,P0

)]
≤ inf

θ∈Θ
DK (Pθ,P0) +

2√
n
.
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Proof of the theorem : preliminary lemma

Lemma
For any P0, when X1, . . . ,Xn are i.i.d from P0,

E
[
DK

(
P̂n,P

0
)]
≤ 1√

n
.

{
E
[
DK

(
P̂n,P

0
)]}2

≤ E
[
D2

K

(
P̂n,P

0
)]

= E
[∥∥∥(1/n)

∑
(µ(δXi

)− µ(P0))
∥∥∥2

H

]
= (1/n)E

[
‖µ(δX1)− µ(P0)‖2H

]
≤ 1/n.
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Proof of the theorem

∀θ, DK

(
Pθ̂MMD

n
,P0
)
≤ DK

(
Pθ̂MMD

n
, P̂n

)
+ DK

(
P̂n,P

0
)

≤ DK

(
Pθ, P̂n

)
+ DK

(
P̂n,P

0
)

≤ DK

(
Pθ,P

0)+ 2DK

(
P̂n,P

0
)

E
[
DK

(
Pθ̂MMD

n
,P0

)]
≤ inf

θ∈Θ
DK (Pθ,P0) +

2√
n
.
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A bound in probability

We can replace the control on the expectation of DK

(
P̂n,P

0
)

by a bound that holds with large probability, thanks to
McDiarmid’s inequality.

Theorem
For any P0, when X1, . . . ,Xn are i.i.d from P0, with probability
at least 1− δ,

DK

(
Pθ̂n ,P

0) ≤ inf
θ∈Θ

DK

(
Pθ,P

0)+
2 + 2

√
2 log

(
1
δ

)
√
n

.
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How to compute θ̂MMD
n ?

We actually have

D2
K (Pθ, P̂n) = EX ,X ′∼Pθ [K (X ,X ′)]− 2

n

n∑
i=1

EX∼Pθ [K (Xi ,X )]

+
1
n2

∑
1≤i ,j≤n

K (Xi ,Xj)

and so

∇θD2
K (Pθ, P̂n)

= 2EX ,X ′∼Pθ

{[
K (X ,X ′)− 1

n

n∑
i=1

K (Xi ,X )

]
∇θ[log pθ(X )]

}

that can be approximated by sampling from Pθ.
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Short bibliography

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. UAI 2015.

define the estimator and used it to train GANs.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv :1906.05944.

provided the first theoretical study : asymptotic distribution.
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In this section, I will present the results of the following
preprint.

Chérief-Abdellatif, B.-E. and Alquier, P. (2019). Finite Sample Properties of Parametric MMD
Estimation : Robustness to Misspecification and Dependence. Preprint arxiv :1912.05737.
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Huber contamination model

Reminder

E
[
DK

(
Pθ̂MMD

n
,P0

)]
≤ inf

θ∈Θ
DK (Pθ,P0) +

2√
n
.

Huber contamination model : P0 = (1− ε)Pθ0 + εQ.
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n
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)]
≤ inf

θ∈Θ
DK (Pθ,P0) +

2√
n
.

Huber contamination model : P0 = (1− ε)Pθ0 + εQ.

DK (Pθ0 ,P0) = ‖Pθ0 − [(1− ε)Pθ0 + εQ]‖H
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[
DK

(
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n
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≤ inf

θ∈Θ
DK (Pθ,P0) +

2√
n
.
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Corollary
When X1, . . . ,Xn are i.i.d from (1− ε)Pθ0 + εQ,

E
[
DK

(
Pθ̂MMD

n
,Pθ0

)]
≤ 4ε +

2√
n
.
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Example : Gaussian mean estimation

Example : the model is given by pθ = N (θ, σ2I ) for θ ∈ Rd .

Using a Gaussian kernel K (x , y) = exp(−‖x − y 2‖/γ2), from
the previous theorem and from the equality

D2
K (Pθ,Pθ′) = 2

(
γ2

4σ2 + γ2

) d
2
[
1− exp

(
−‖θ − θ

′‖2

4σ2 + γ2

)]
we obtain
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γ2
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) d
2
[
1− exp

(
−‖θ − θ

′‖2

4σ2 + γ2

)]
we obtain

E
[
‖θ̂MMD

n − θ0‖2
]

take γ = 2dσ2

≤ −(4σ2 + γ2) log

[
1− 4

(
1
n

+ ε2
)(

4σ2 + γ2

γ2

) d
2
]
.
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Example : Gaussian mean estimation, simulations

Model : N (θ, 1), and X1, . . . ,Xn i.i.d N (θ0, 1), n = 100 and
we repeat the experiment 200 times.

θ̂MLE
n θ̂MMD

n

mean absolute error 0.0722 0.0838

Now, ε = 2% of the observations drawn from a Cauchy.

mean absolute error 0.2349 0.0953

Now, ε = 1% are replaced by 1, 000.

mean absolute error 10.018 0.0903
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And now, non-independent observations

Lemma
When X1, . . . ,Xn are identically distributed from P0,

E
[
DK

(
P̂n,P

0
)]
≤ ?

E
[
D2

K

(
P̂n,P

0
)]

= E
[∥∥∥(1/n)

∑
(µ(δXi

)− µ(P0))
∥∥∥2

H

]
=

1
n

+
2
n2

∑
1≤i<j≤n

E
〈
µ(δXi

)− µ(P0), µ(δXj
)− µ(P0)

〉
H

Pierre Alquier, RIKEN AIP Parametric estimation via MMD optimization



Estimation via MMD optimization
Robustness to outliers and to dependence

Further topics

Robustness to outliers and to dependence
Example : estimation of the mean of a Gaussian
Robustness to dependence

And now, non-independent observations

Lemma
When X1, . . . ,Xn are identically distributed from P0,

E
[
DK

(
P̂n,P

0
)]
≤ ?

E
[
D2

K

(
P̂n,P

0
)]

= E
[∥∥∥(1/n)

∑
(µ(δXi

)− µ(P0))
∥∥∥2

H

]
=

1
n

+
2
n2

∑
1≤i<j≤n

E
〈
µ(δXi

)− µ(P0), µ(δXj
)− µ(P0)

〉
H

Pierre Alquier, RIKEN AIP Parametric estimation via MMD optimization



Estimation via MMD optimization
Robustness to outliers and to dependence

Further topics

Robustness to outliers and to dependence
Example : estimation of the mean of a Gaussian
Robustness to dependence

Mesure of dependence via covariance in H

Definition
When (X1, . . . ,Xn, . . . ) is a stationary process with marginal
distribution P0, we put :

%h =
∣∣E 〈µ(δXt+h

)− µ(P0), µ(δXt )− µ(P0)
〉
H

∣∣ .

Lemma - dependent case
When X1, . . . ,Xn are identically distributed from P0,

E
[
DK

(
P̂n,P

0
)]
≤ 1

n

[
1 +

n∑
h=1

%h

]
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Mesure of dependence via covariance in H

Theorem - dependent case
When (X1, . . . ,Xn, . . . ) is a stationary process with marginal
distribution P0

E
[
DK

(
Pθ̂MMD

n
,P0

)]
≤ inf

θ∈Θ
DK (Pθ,P0) +

2 + 2
∑n

h=1 %h√
n

.

1 assume that
∑∞

h=1 %h = Σ < +∞ then

E
[
DK

(
Pθ̂MMD

n
,P0

)]
≤ inf

θ∈Θ
DK (Pθ,P0) +

2 + 2Σ√
n

.

2 we also have a bound in probability, based on Rio’s version
of Hoeffding’s inequality ; it requires more assumptions.
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An example : auto-regressive processes

Proposition

Assume that Xt takes values in Rd and that
K (x , y) = F (‖x − y‖) where F is an L-Lipschitz function.
Assume that

Xt+1 = AXt + εt+1

where the (εt) are i.i.d with E‖ε0‖ <∞, and A is a matrix
with ‖A‖ = sup‖x‖=1 ‖Ax‖ < 1.

Then

%t ≤ ‖A‖t
2LE‖ε0‖
1− ‖A‖

and Σ =
∞∑
t=1

%t =
2‖A‖LE‖ε0‖
(1− ‖A‖)2 .
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A non-mixing process with Σ < +∞
Example : consider X0 ∼ U([0, 1]), ηt i.i.d Be(1/2) and

Xt+1 =
Xt + ηt+1

2
.

It satisfies the assumptions of the previous proposition, we
have %t ≤ L/2t and Σ = 2L.

Note however that this process is known to be non-mixing.

More generally, we prove the following result :

Proposition
Under some (non-restrictive) assumption on the kernel K ,

%t ≤ cK .βt (the β-mixing coef.)
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Problem with semi-parametric models

The method, as explained so far, must describe completely the
distribution of the observations.

But this is often not the case
in practice ! For example

in regression, we observe (X ,Y ) and we only want to
modelize PY |X , but not PX .
in copulas, we observe (V1,V2) and we want to modelize
their copula, that is the c.d.f of (FV1(V1),FV2(V2)) on
[0, 1]2 but we are not interested in FV1 nor FV2 .

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via Maximum Mean Discrepancy.
Preprint arxiv :2006.00840.

Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. (2020). Estimation of
copulas via Maximum Mean Discrepancy. Preprint arXiv : 2010.00408.
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copulas via Maximum Mean Discrepancy. Preprint arXiv : 2010.00408.
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Regression with MMD

P0
(X ,Y ) = P0

Y |XP
0
X

P0
Y |X estimated by Qg(µ̂,X )

Ex : Qg(µ,X ) = N (µTX , 1).
P0
X estimated by P̂X =

1

n

n∑
i=1

δXi
.

Product kernel : K ((x , y), (x ′, y ′)) = KX (x , x ′)KY (y , y ′).

DK (Qg(µ̂,X )P̂X ,P
0
Y |X P̂X ) ≤ . . . straightforward !

DK (Qg(µ̂,X )P
0
X ,P

0
Y |XP

0
X ) ≤ . . . quite difficult.

Requires : f (x , y) ∈ HK ⇒ EY∼Qg(θ,x)
[f (x ,Y )] ∈ HKX

.
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Estimation of copulas with MMD
Estimation of copulas : we observe (V1,i ,V2,i)1≤i≤n.

estimate FV1 by the empirical c.d.f F̂1,
estimate FV2 by the empirical c.d.f F̂2,
standard MMD procedure with kernel KU on

(U1,i ,U2,i) = (F̂1(V1,i), F̂2(V2,i)).

Theorem
With probability larger than 1− δ − ν ∈ (0, 1),

DKU
(Pθ̂n ,P0) ≤ inf

θ∈Θ
DKU

(Pθ,P0) +

√
8
n

[
1 +

√
log

(
1
δ

)]

+

√
8
n
‖∂(2)KU‖∞ log

(
2
ν

)
.

The paper also :
studies the asymptotic normality of θ̂n under some
assumptions on the model.
introduces the R package MMDCopula
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The package MMDCopula

Uses a stochastic gradient algorithm to compute the MMD
estimator of the parameter(s) :

1 of the main copulas models : Gaussian, Frank, Clayton,
Gumbel, Student, etc.

2 using various kernels : Gaussian, Laplace, etc.
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Example : Gaussian copulas
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Example : other models
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MMD-Bayes

We also studied a “pseudo-Bayesian” version of the estimator :

p(θ|X1, . . . ,Xn) ∝ exp
(
−βD2

K

(
Pθ, P̂n

))
π(θ).

Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes : Robust Bayesian Estimation via
Maximum Mean Discrepancy. Proceedings of AABI.

Pierre Alquier, RIKEN AIP Parametric estimation via MMD optimization



Estimation via MMD optimization
Robustness to outliers and to dependence

Further topics

Semi-parametric models
Copulas
MMD-Bayes

Thank you !

Pierre Alquier, RIKEN AIP Parametric estimation via MMD optimization


	Estimation via MMD optimization
	Definition of the estimator
	Basic properties
	References and further works

	Robustness to outliers and to dependence
	Robustness to outliers and to dependence
	Example: estimation of the mean of a Gaussian
	Robustness to dependence

	Further topics
	Semi-parametric models
	Copulas
	MMD-Bayes


