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Multivariate time series

S. Imperio et al. (2010). Investigating
population dynamics in ungulates : Do
hunting statistics make up a good index
of population abundance ? Wildlife
Biology.

multivariate series
correlations
noisy observations
missing entries
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Partially observed multivariate time series

i . . . t − 3 t − 2 t − 1 t+0 t + 1 t + 2 t + 3 . . .

1 . . . 12.5 17 . . .
2 . . . 1.2 3.8 2.9 . . .
3 . . . 0 7.2 . . .
4 . . . 4.2 3.1 2.4 2.3 . . .
5 . . . 23.1 45.1 39.9 . . .
6 . . . 4.1 4.1 6.3 2.9 . . .
7 . . . 0.1 0.9 0 . . .
8 . . . 34.7 . . .
...

...
... . . .
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Examples

econometrics : panel data with missing entries,
industry : data from sensors at multiple locations,
ecology : spatial data with observations from a few sites
only at each date,
. . .

more generally, any situation where we have multivariate
time series and each measurement is expensive.
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Matrix completion methods

matrix completion
algorithms exist, and
were successful in
many applications.
many of them are
based on a low-rank
assumption and on
matrix factorization.
however, the theory
was developped only in
the independent case.
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Classical example : collaborative filtering

Stan
Pierre
Zoe
Bob
Oscar
Léa
Tony
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Matrix completion model
Minimax rate of estimation

A statistical model

There is a d × T matrix M and n i.i.d observations Y1, . . . ,Yn

drawn as :
(i`, j`) drawn uniformly on {1, . . . , d} × {1, . . . ,T},
Y` = Mi`,j` + ε`

where ε` is some noise (= 0 in the first papers on the topic,
subgaussian with variance σ2 later).

Key assumption : k := rank(M)� min(d ,T ) = K .
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SVD & matrix factorization

M =

U1 . . . Uk . . .


︸ ︷︷ ︸

=U (d×K)


σ1 0 . . .

0 . . . 0 . . .
... σk

0
. . .


︸ ︷︷ ︸

=Σ (K×K)


V T

1
...

V T
k
...


︸ ︷︷ ︸

=VT (K×T )

M =

 U1 . . . Uk


 σ1 0

. . .
0 σk


︸ ︷︷ ︸

=A (d×k)

 V T
1
...

V T
k


︸ ︷︷ ︸

=B (k×T )

Pierre Alquier, RIKEN AIP Time Series Completion



Introduction
Matrix completion : the independent case

Time series completion

Matrix completion model
Minimax rate of estimation

SVD & matrix factorization

M =

U1 . . . Uk . . .


︸ ︷︷ ︸

=U (d×K)


σ1 0 . . .

0 . . . 0 . . .
... σk

0
. . .


︸ ︷︷ ︸

=Σ (K×K)


V T

1
...

V T
k
...


︸ ︷︷ ︸

=VT (K×T )

M =

 U1 . . . Uk


 σ1 0

. . .
0 σk


︸ ︷︷ ︸

=A (d×k)

 V T
1
...

V T
k


︸ ︷︷ ︸

=B (k×T )

Pierre Alquier, RIKEN AIP Time Series Completion



Introduction
Matrix completion : the independent case

Time series completion

Matrix completion model
Minimax rate of estimation

Estimation

M̂λ = arg min
X


n∑
`=1

(Y` − Xi`,j`)
2 + λ

min(d ,T )∑
h=1

σh(X )

 .

Theorem
For a well chosen λ that does not depend on k , and under
minimal assumptions on M , with large probability

1
dT

∑
i ,j

(
M̂λ

i ,j −Mi ,j

)2
≤ Cst

σk(d + T ) log(d + T )

n

Koltchinskii, V., Lounici, K. and Tsybakov, A. (2011). Nuclear-norm penalization and optimal
rates for noisy low-rank matrix completion. The Annals of Statistics.
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Time series completion : the model

low-rank trend :

M = A︸︷︷︸
d×k

B︸︷︷︸
k×T

temporal correlated
noise ε :

εi ,t indep. εj ,t′ (i 6= j)

εi ,t not indep. εi ,t′

(i`, t`) i.i.d uniform, ξ`
observation noise :

Y` = Mi`,t` + εi`,t` + ξ`.
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Assumptions

Reminder : the model

Y` = Mi`,t` + εi`,t` + ξ`.

M = A︸︷︷︸
d×k

B︸︷︷︸
k×T

and |Ai ,h|, |Bh,t | ≤ cA,B/
√
k .

(i`, t`) i.i.d uniform on {1, . . . , d} × {1 . . . ,T} ;
(εi ,t)t=1,...,T is a bounded, φ-mixing time series :

|εi ,t | ≤ mε and
∞∑
t=1

φεi,·(t) ≤ Φε.

(ξ`) are i.i.d, sub-exponential variables : for k ≥ 2,

E(|ξ`|q) ≤
vξc

q−2
ξ q!

2
.
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Estimator and risk bound

M̂ (k) = arg min
X︸︷︷︸
d×T

= A︸︷︷︸
d×k

B︸︷︷︸
k×T

n∑
`=1

(Y` − Xi`,j`)
2.

Theorem
With probability at least 1− η,

1
dT

∑
i ,j

(
M̂

(k)
i ,j −Mi ,j

)2
≤ C

k(d + T ) log(n) + log
(

1
η

)
n

where C = C (cA,B ,mε,Φε, vξ, cξ) is known.
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Remarks on the proof

1 decompose the difference between empirical risk and
expected risk 1

n

∑n
`=1(Y` − Xi`,j`)

2 − 1
dT

∑
i ,j (Mi ,j − Xi ,j)

2

in elementary terms.
2 some of these terms are sums of i.i.d variables. Bound

them via Bernstein inequality. Some are sums of φ-mixing
variables, use :

Samson, P.-M. (2000). Concentration of measure inequalities for Markov chains and Φ-mixing
processes. The Annals of Probability.

3 union bound.

REMARK : if the εi,· satisfy another notion of mixing or weak-dependence, we can use alternative
versions of Bernstein inequality but this lead to slower rates of convergence, in 1/

√
n.
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Rank selection

k̂ = arg min
1≤k≤K

{
1
n

n∑
`=1

(Y` − Xi`,j`)
2 + C ′

k(d + T ) log(n)

n

}

where C ′ = C ′(cA,B ,mε,Φε, vξ, cξ) is known but too large.

In practice : we use the slope heuristic to calibrate a better C ′.

Theorem
With probability at least 1− η,

1
dT

∑
i ,j

(
M̂

(k̂)
i ,j −Mi ,j

)2
≤ C ′′

k(d + T ) log(n) + log
(

1
η

)
n

.
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Time series with a structure
Example : assume that the trends in M are p-periodic. This
means that

M︸︷︷︸
d×T

= C︸︷︷︸
d×p

(Ip| . . . |Ip)︸ ︷︷ ︸
=Λ (p×T )

.

More generally, we can assume that there is a known structure
in M :

M︸︷︷︸
d×T

= C︸︷︷︸
d×p

Λ︸︷︷︸
p×T

and still add the initial “low-rank decomposition” to ensure
correlations in the rows :

M︸︷︷︸
d×T

= A︸︷︷︸
d×k

B︸︷︷︸
k×p

Λ︸︷︷︸
p×T

.
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Faster rates

M̂ (k) = arg min
X︸︷︷︸
d×T

= A︸︷︷︸
d×k

B︸︷︷︸
k×p

Λ︸︷︷︸
p×T

n∑
`=1

(Y` − Xi`,j`)
2.

Theorem
With probability at least 1− η,

1
dT

∑
i ,j

(
M̂

(k)
i ,j −Mi ,j

)2
≤ C

k(d + p) log(n) + log
(

1
η

)
n

.

We also have a similar rank-selection procedure.
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RIKEN AIP : position in the ABI team

Approximate Bayesian
Inference team (ABI), lead

by Emtiyaz Khan

Please visit the team website

https ://team-approx-bayes.github.io/

Open Position : Research Scientist (1 position, Female only)

research only (= chargé de recherches),

indefinite-term,

located in Tokyo center.
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