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Let X1, . . . ,Xn be i.i.d in X from a probability distribution P∗.

Statistical inference :
propose a model (Pθ, θ ∈ Θ), often assume P∗ = Pθ∗ ,
compute θ̂n = θ̂n(X1, . . . ,Xn).

Standard methods :
Maximum Likelihood Estimators (MLE),
Bayesian inference,
method of moments...

Theory of Bayes/MLE strongly relies on P∗ = Pθ∗ , method of
moments unstable if the Xi ’s are heavy-tailed...
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Example :

pθ(x) =
exp(−|x − θ|)
2
√

π|x − θ|
,

L(θ) =
exp (−

∑n
i=1 |Xi − θ|)

(2
√
π)n
∏n

i=1

√
|Xi − θ|

.
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What is an outlier ?
Huber proposed the contamination model : with probability ε,
Xi is not drawn from Pθ∗ but from Q that can be anything :

P∗ = (1 − ε)Pθ∗ + εQ.

Example : Pθ = Unif [0, θ], then

L(θ) =
1
θn

n∏
i=1

1{0≤Xi≤θ} ⇒ θ̂ = max
1≤i≤n

Xi .

In the case of the following contamination, the MLE is
extremely far from the truth :

P0 = 0.99 · Unif [0, 1] + 0.01 · Unif [1000, 2000].
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Minimum Distance Estimation (MDE)

Let d(·, ·) be a metric on probability distributions, we put :

θ̂d := argmin
θ∈Θ

d
(
Pθ, P̂n

)
where P̂n :=

1
n

n∑
i=1

δXi
.

MDE with well-chosen d leads to robust estimation.

Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics.

Bickel, P. J. (1976). Another look at robustness : a review of reviews and some new
developments. Scandinavian Journal of Statistics. Discussion by Sture Holm.

Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estimation. JASA.

Kolmogorov-Smirnov (KS) suggested by Sture Holm.
Wasserstein distance studied recently (but not so robust).
This talk : Maximum Mean Discrepancy (MMD).

Pierre Alquier, ESSEC Business School Estimation with MMD



Minimum Distance Estimation and MMD
Applications
Algorithms

Let H be a Hilbert space and any continuous function
Φ : X → H. The function

K (x , y) = ⟨Φ(x),Φ(y)⟩H

is called a kernel.

Mercer’s theorem
Let K (x , y) be a continuous function such that for any
(x1, . . . , xn) ∈ X n and (c1, . . . , cn) ̸= (0, . . . , 0) ∈ Rn,

n∑
i=1

n∑
j=1

cicjK (xi , xj) > 0,

then there is H and Φ such that K (x , y) = ⟨Φ(x),Φ(y)⟩H.
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Assume that the kernel is bounded : 0 ≤ K (x , y) ≤ 1.

Consider, for any probability distribution P on X ,

µK (P) = EX∼P [Φ(X )] .

The kernel K is said to be characteristic if

µK (P) = µK (Q) ⇒ P = Q.

Examples

K (x , y) = exp(−∥x−y∥2

γ2 ) and exp(−∥x−y∥
γ

) are char. kernels.

Definition : the MMD distance

DK (P ,Q) = ∥µK (P)− µK (Q)∥H .
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Reminder of the context :
1 X1, . . . ,Xn be i.i.d in X from a probability distribution P∗,
2 model (Pθ, θ ∈ Θ).

Definition - MMD Minimum Distance Estimator

θ̂K := argmin
θ∈Θ

DK

(
Pθ, P̂n

)
where P̂n =

1
n

n∑
i=1

δXi
.
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Theorem
For any P∗, when X1, . . . ,Xn are i.i.d from P∗,

E
[
DK

(
Pθ̂K

,P∗)] ≤ inf
θ∈Θ

DK (Pθ,P
∗) +

2√
n
.

Chérief-Abdellatif, B.-E. and Alquier, P. (2022). Finite Sample Properties of Parametric MMD
Estimation : Robustness to Misspecification and Dependence. Bernoulli.

If the model is well-specified, that is P∗ = Pθ∗ ,

E
[
DK

(
Pθ̂K

,Pθ∗
)]

≤ 2√
n
.

In Huber contamination model P∗ = (1 − ε)Pθ∗ + εQ,
using the triangle inequality a few times :

E
[
DK

(
Pθ̂K

,Pθ∗
)]

≤ 4ε+
2√
n
.
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Corollary (informally stated)

If the model and the kernel K satisfy, for θ′ → θ,

DK (Pθ,Pθ′) ∼ c · ∥θ − θ′∥p

then

∥θ̂K − θ∗∥p ∼ 2
c
√
n

(
+

4ε
c

)
.

For example, if Pθ = N (θ, Id),

D2
K (Pθ,Pθ′) = 2

(
γ2

4σ2 + γ2

) d
2
[
1 − exp

(
−∥θ − θ′∥2

4σ2 + γ2

)]
and thus

∥θ̂K − θ∗∥2 ≲
16dσ2

n
(+16dε).
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Setting : we repeat the exp. 200 times,
Pθ = N (θ, 1),
X1, . . . ,Xn i.i.d Pθ∗ , n = 100.

MLE MMD KS
mean abs. error 0.081 0.094 0.088

Now, ε = 2% of the observations drawn from a Cauchy.

mean abs. error 0.276 0.095 0.088

Now, ε = 1% are replaced by 1, 000.

mean abs. error 10.008 0.088 0.082
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Application 1 : Generative AI.

Generative model X ∼ Pθ :
U ∼ Unif[0, 1]d ,
X = Fθ(U) where Fθ is some
neural network with weights θ.

Dziugaite, G. K., Roy, D. M. and Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. UAI.

Li, Y., Swersky, K. and Zemel, R. (2015). Generative Moment Matching Networks. ICML.

→ proposed to minimize the MMD to learn θ.
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Results from Dziugaite et al. (2015).
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Application 2 : Stochastic Differential Equations.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv :1906.05944.

Stochastic version of Lotka-Volterra model.

Comparison of MMD // Wasserstein minimization.
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Application 3 : Copulas.

Cθ(x1, x2) = Pθ(X1 ≤ F−1
1 (x1),X2 ≤ F−1

2 (x2)).

Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. (2023). Estimation of
copulas via Maximum Mean Discrepancy. JASA.
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Application 4 : quantization / data compression.

Teymur, O., Gorham, J., Riabiz, M. and Oates, C. (2021). Optimal quantisation of probability
measures using maximum mean discrepancy. AISTAT.

Idea : compress a sample X1, . . . ,Xn to x1, . . . , xm with
m ≪ n, by

min
θ=(x1,...,xm)

DK

(
1
n

n∑
i=1

δXi
,

1
m

m∑
j=1

δxj

)
.
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Application/extension 5 : time series.

Theorem
When X1, . . . ,Xn are �

��i.i.d from a stationary time series with
marginal distribution P∗,

E
[
DK

(
Pθ̂K

,P∗)] ≤ inf
θ∈Θ

DK (Pθ,P
∗) +

2
√

1 + 2
∑

s>0 ρs√
n

where
ρs = |EK (X0,Xs)− EK (X0,X

′
0)|.

Chérief-Abdellatif, B.-E. and Alquier, P. (2022). Finite Sample Properties of Parametric MMD
Estimation : Robustness to Misspecification and Dependence. Bernoulli.

For classical processes (Markov chains and hidden Markov
chains, autoregressions etc),

∑
s>0 ρs < +∞.
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Application/extension 6 : regression.
Assume we observe (X1,Y1), . . . , (Xn,Yn).
A direct application of the above allows to estimate the
joint distribution of (X ,Y ).
But we are interested in Y |X , and we don’t want to
specify a model for X !
Feasible, but far more complicated as the theory of
conditional mean embeddings is difficult...

Alquier, P. and Gerber, M. (2024). Universal Robust Regression via Maximum Mean Discrepancy.
To appear in Biometrika.
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Reminder

µK (P) = EX∼P [Φ(X )] K (u, v) = ⟨Φ(u),Φ(v)⟩H ,

D2
K (P ,Q) = ∥µK (P)− µK (Q)∥2

H .

D2
K (P ,Q) = ∥µK (P)∥2

H − 2 ⟨µK (P), µK (Q)⟩H + ∥µK (Q)∥2
H .

For example,

⟨µK (P), µK (Q)⟩H = ⟨EX∼P [Φ(X )],EX ′∼Q [Φ(X
′)]⟩H

= EX∼P,X ′∼Q ⟨Φ(X ),Φ(X ′)⟩H
= EX∼P,X ′∼QK (X ,X ′).

D2
K (P ,Q) = EX∼P,Y∼PK (X ,Y )− 2EX∼P,X ′∼QK (X ,X ′)

+ EX ′∼Q,Y ′∼QK (X ,X ′).
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Reminder

θ̂K := argmin
θ∈Θ

DK

(
Pθ, P̂n

)
where P̂n =

1
n

n∑
i=1

δXi
.

D2
K (Pθ, P̂n) = EX∼Pθ,Y∼Pθ

K (X ,Y )− 2
n

n∑
i=1

EX∼Pθ
K (X ,Xi)

+
����������1
n2

∑
1≤i ,j≤n

K (Xi ,Xj).

Exact evaluation sometimes possible if we have a close
formula for EX∼Pθ

...
Monte-Carlo approx. only requires to sample X ∼ Pθ.
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Theorem : gradient of MMD
Assume Pθ has a differentiable density pθ, then

∇θD2
K (Pθ, P̂n)

= 2EX ,X ′∼Pθ

{(
K (X ,X ′)− 1

n

n∑
i=1

K (Xi ,X )
)
∇θ log pθ(X )

}
.

If we sample X ,X ′ ∼ Pθ, then

∇̂ :=
(
K (X ,X ′)− 1

n

n∑
i=1

K (Xi ,X )
)
∇θ log pθ(X )

is an unbiased estimator of ∇θD2
K (Pθ, P̂n). We can thus

minimize by stochastic gradient.
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R package (joint work with Mathieu Gerber) available soon.
Will contain stochastic optimization to compute θ̂K in 15-20
classical parametric models + regression, logistic regression,
etc.
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“Bayesian style” estimators (and algorithms) based on MMD ?

1) MMD-Bayes

π(θ|X1, . . . ,Xn) ∝ π(θ) exp
[
−β · DK

(
Pθ, P̂n

)]
π(θ|X1, . . . ,Xn) approximated by variational inference
(using stochastic gradient again)

Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes : Robust Bayesian Estimation via
Maximum Mean Discrepancy. Proceedings of AABI.

pseudo-marginal MCMC / noisy MCMC :

Pacchiardi, L. and Dutta, R. (2021). Generalized Bayesian likelihood-free inference using scoring
rules estimators. ArXiv preprint arXiv :2104.03889.
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2) MMD-ABC

INPUT : data X1, . . . ,Xn, model (Pθ, θ ∈ Θ), prior π and
threshold ϵ.
(i) sample θ ∼ π,
(ii) sample Z1, . . . ,Zn i.i.d. from Pθ,

if DK (
1
n

∑n
i=1 δZi

, 1
n

∑n
i=1 δXi

) ≤ ϵ return θ,
else goto (i).

OUTPUT : ϑ.

The distribution πMMD-ABC(ϑ) of the output ϑ converges
to the (usual) posterior when ϵ → 0,
ϵ > 0 computationally more efficient AND robust...

S. Legramanti, D. Durante & P. Alquier (2022). Concentration and robustness of
discrepancy–based ABC via Rademacher complexity. Preprint arXiv :2206.06991.
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Open questions :
faster algorithms, especially when likelihood not available,
general results to connect ∥θ1 − θ2∥ to DK (Pθ1 ,Pθ2) in
non-standard models,
data-driven kernel choice ? Does it always lead to optimal
rates ?

Much tighter bounds on DK

(
Pθ̂K

,P∗) in the following paper.
Helps to understand the role of the kernel K :

Wolfer, G. and Alquier, P. (2022). Variance-Aware Estimation of Kernel Mean Embedding.
Preprint arXiv :2210.06672.
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Thank you !
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