Concentration of tempered posteriors and of their variational approximations

Pierre Alquier

Statistics seminar Cambdrige University, Nov. 16, 2018

Outline of the talk

- Introduction: tempered posteriors & variational approx.
 - Tempered posteriors
 - Variational approximations
- 2 Main results
 - Concentration of the tempered posterior
 - A result in expectation
 - The misspecified case
- 3 Applications
 - Application to matrix completion
 - Gaussian VB
 - Other applications and extentions

Outline of the talk

- Introduction: tempered posteriors & variational approx.
 - Tempered posteriors
 - Variational approximations
- Main results
 - Concentration of the tempered posterior
 - A result in expectation
 - The misspecified case
- Applications
 - Application to matrix completion
 - Gaussian VB
 - Other applications and extentions

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(\theta) = \prod_{i=1}^n p_{\theta}(X_i)$$

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(\theta) = \prod_{i=1}^n p_{\theta}(X_i)$$

The posterior

$$\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$$

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q : \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(\theta) = \prod_{i=1}^n p_{\theta}(X_i)$$

The posterior

$$\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$$

The tempered posterior - 0 $< \alpha < 1$

$$\pi_{n,\alpha}(\mathrm{d}\theta) \propto [L_n(\theta)]^{\alpha} \pi(\mathrm{d}\theta).$$

Various reasons to use a tempered posterior

• easier to sample from.

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

Various reasons to use a tempered posterior

• easier to sample from.

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

 more robust to model misspecification (at least empirically)

P. Grünwald (2012). The Safe Bayesian : Learning the Learning Rate via the Mixability Gap ALT2012.

Various reasons to use a tempered posterior

• easier to sample from.

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

 more robust to model misspecification (at least empirically)

P. Grünwald (2012). The Safe Bayesian : Learning the Learning Rate via the Mixability Gap ALT2012.

theoretical analysis easier

A. Bhattacharya, D. Pati & Y. Yang (2016). Bayesian fractional posteriors. *Preprint arxiv*:1611.01125, to appear in the Annals of Statistics.

Bhattacharya, Pati & Yang's approach (1/2)

The α -Rényi divergence for $\alpha \in (0,1)$

$$D_{\alpha}(P,R) = \begin{cases} \frac{1}{\alpha-1} \log \int \left(\frac{\mathrm{d}P}{\mathrm{d}R}\right)^{\alpha-1} \mathrm{d}P & \text{if } P \ll R \\ +\infty & \text{otherwise.} \end{cases}$$

Bhattacharya, Pati & Yang's approach (1/2)

The α -Rényi divergence for $\alpha \in (0,1)$

$$D_{\alpha}(P,R) = \begin{cases} \frac{1}{\alpha - 1} \log \int \left(\frac{\mathrm{d}P}{\mathrm{d}R}\right)^{\alpha - 1} \mathrm{d}P & \text{if } P \ll R \\ +\infty & \text{otherwise.} \end{cases}$$

All the properties derived in :

T. Van Erven & P. Harremos (2014). Rényi divergence and Kullback-Leibler divergence. *IEEE Transactions on Information Theory*.

Among others, for $1/2 \le \alpha$, link with Hellinger and Kullback :

$$\mathcal{H}^2(P,R) \leq D_{\alpha}(P,R) \xrightarrow{\alpha \nearrow 1} \mathcal{K}(P,R).$$

Bhattacharya, Pati & Yang's approach (2/2)

$$\mathcal{B}(r) = \left\{\theta \in \Theta : \mathcal{K}(P_{\theta_0}, P_{\theta}) \leq r \text{ and } \operatorname{Var}\left[\log \frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)}\right] \leq r.\right\}$$

Theorem (Bhattacharya, Pati & Yang)

For any sequence (r_n) such that

$$-\log \pi[B(r_n)] \le nr_n$$

we have

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0})\pi_{n,\alpha}(\mathrm{d}\theta) \leq \frac{2(1+\alpha)}{1-\alpha}r_n\right] \geq 1 - \frac{2}{nr_n}.$$

Popular methods to compute / sample from the (tempered) posterior :

Popular methods to compute / sample from the (tempered) posterior :

 Monte-Carlo methods: MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods: MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods: variational Bayes (VB) and expectation-propagation (EP).

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods : variational Bayes (VB) and expectation-propagation (EP).

Principle of VB : chose a family \mathcal{F} of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in \mathcal{F} :

Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo etc.
- optimization methods: variational Bayes (VB) and expectation-propagation (EP).

Principle of VB : chose a family $\mathcal F$ of probability distributions on Θ and approximate $\pi_{n,\alpha}$ by a distribution in $\mathcal F$:

$$ilde{\pi}_{\mathbf{n}, lpha} := \arg\min_{
ho \in \mathcal{F}} \mathcal{K}(
ho, \pi_{\mathbf{n}, lpha}).$$

Variational approximations

$$egin{aligned} ilde{\pi}_{n,lpha} &= rg\min_{
ho \in \mathcal{F}} \mathcal{K}(
ho,\pi_{n,lpha}) \ &= rg\min_{
ho \in \mathcal{F}} \left\{ -lpha \int rac{1}{n} \sum_{i=1}^n \log p_ heta(X_i)
ho(\mathrm{d} heta) + \mathcal{K}(
ho,\pi)
ight\}. \end{aligned}$$

Examples:

Variational approximations

$$egin{aligned} & \widetilde{\pi}_{n,lpha} = rg\min_{
ho \in \mathcal{F}} \mathcal{K}(
ho, \pi_{n,lpha}) \ & = rg\min_{
ho \in \mathcal{F}} \left\{ -lpha \int rac{1}{n} \sum_{i=1}^n \log p_{ heta}(X_i)
ho(\mathrm{d} heta) + \mathcal{K}(
ho, \pi)
ight\}. \end{aligned}$$

Examples:

parametric approximation

$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+ \right\}.$$

Variational approximations

$$egin{aligned} \widetilde{\pi}_{n,lpha} &= \arg\min_{
ho\in\mathcal{F}} \mathcal{K}(
ho,\pi_{n,lpha}) \ &= \arg\min_{
ho\in\mathcal{F}} \left\{ -lpha \int rac{1}{n} \sum_{i=1}^n \log p_{ heta}(X_i)
ho(\mathrm{d} heta) + \mathcal{K}(
ho,\pi)
ight\}. \end{aligned}$$

Examples:

parametric approximation

$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+ \right\}.$$

• mean-field approximation, $\Theta = \Theta_1 \times \Theta_2$ and

$$\mathcal{F}: \{ \rho : \rho(\mathrm{d}\theta) = \rho_1(\mathrm{d}\theta_1) \times \rho_2(\mathrm{d}\theta_2) \}.$$

Outline of the talk

- Introduction: tempered posteriors & variational approx.
 - Tempered posteriors
 - Variational approximations
- 2 Main results
 - Concentration of the tempered posterior
 - A result in expectation
 - The misspecified case
- Applications
 - Application to matrix completion
 - Gaussian VB
 - Other applications and extentions

Results from the preprint

P. Alquier & J. Ridgway (2017). Concentration of tempered posteriors and of their variational approximations. *Preprint arxiv*:1706.09293.

Extension of previous result to VB

Theorem

Assume that (r_n) is such that there is a distribution $\rho_n \in \mathcal{F}$ with

$$\int \mathcal{K}(P_{\theta_0}, P_{\theta}) \rho_n(\mathrm{d}\theta) \leq r_n, \ \int \mathbb{E}\left[\log^2\left(\frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)}\right)\right] \rho_n(\mathrm{d}\theta) \leq r_n$$

and

$$\mathcal{K}(\rho_n,\pi) \leq nr_n$$
.

Then, for any $\alpha \in (0,1)$,

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0}) \tilde{\pi}_{n,\alpha}(\mathrm{d}\theta) \leq \frac{2(\alpha+1)}{1-\alpha} r_n\right] \geq 1 - \frac{2}{nr_n}.$$

A simpler result in expectation

Theorem

If we only require that there is $\rho_n \in \mathcal{F}$ such that

$$\int \mathcal{K}(P_{\theta_0}, P_{\theta}) \rho_n(\mathrm{d}\theta) \leq r_n$$

and

$$\mathcal{K}(\rho_n, \pi) \leq nr_n$$

then, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{0}}) \tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{1+\alpha}{1-\alpha} r_{n}.$$

Assume now that X_1, \ldots, X_n i.i.d from $Q \notin \{P_{\theta}, \theta \in \Theta\}$. Put :

$$\theta^* := \arg\min_{\theta \in \Theta} \mathcal{K}(Q, P_{\theta}).$$

Theorem

Assume that there is $\rho_n \in \mathcal{F}$ such that

$$\int \mathbb{E}\left[\log\frac{\mathrm{d}P_{\theta^*}}{\mathrm{d}P_{\theta}}\right]\rho_n(\mathrm{d}\theta) \leq r_n \text{ and } \mathcal{K}(\rho_n,\pi) \leq nr_n,$$

then, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta},Q)\widetilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{\alpha}{1-\alpha}\mathcal{K}(Q,P_{\theta^*}) + \frac{1+\alpha}{1-\alpha}r_n.$$

Outline of the talk

- Introduction: tempered posteriors & variational approx.
 - Tempered posteriors
 - Variational approximations
- Main results
 - Concentration of the tempered posterior
 - A result in expectation
 - The misspecified case
- 3 Applications
 - Application to matrix completion
 - Gaussian VB
 - Other applications and extentions

Matrix completion: notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \dots, m\} \times \{1, \dots, p\})$. Assume that the ε_k are i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known. We have

$$\mathcal{K}(P_M, P_N) = \frac{1}{mp} \sum_{i=1}^m \sum_{j=1}^p \frac{(M_{i,j} - N_{i,j})^2}{2\sigma^2} = \frac{\|M - N\|_F^2}{2\sigma^2 mp}.$$

Matrix completion: notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \dots, m\} \times \{1, \dots, p\})$. Assume that the ε_k are i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known. We have

$$\mathcal{K}(P_M, P_N) = \frac{1}{mp} \sum_{i=1}^m \sum_{j=1}^p \frac{(M_{i,j} - N_{i,j})^2}{2\sigma^2} = \frac{\|M - N\|_F^2}{2\sigma^2 mp}.$$

Usual assumption : M^0 is low-rank.

Prior specification - main idea

Define:

$$\underbrace{\mathcal{M}}_{p\times m} = \underbrace{\mathcal{U}}_{p\times k} \underbrace{\mathcal{V}^T}_{k\times m}$$

Prior specification - main idea

Define:

$$\underbrace{\mathcal{M}}_{p\times m} = \underbrace{\mathcal{U}}_{p\times k} \underbrace{\mathcal{V}}_{k\times m}^{\mathsf{T}}.$$

Let $U_{\cdot,\ell} \sim \mathcal{N}(0,\gamma I)$ denote the ℓ -th column of M, we have :

$$M = \sum_{\ell=1}^{k} U_{\cdot,\ell}(V_{\cdot,\ell})^{T} \quad \Rightarrow \quad \operatorname{rank}(M) \leq k.$$

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. Proceedings of ICML'08.

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. Proceedings of ICML'08.

$$M = \sum_{\ell=1}^k U_{\cdot,\ell}(V_{\cdot,\ell})^T$$

with k large - e.g. $k = \min(p, m)$.

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. Proceedings of ICML'08.

$$M = \sum_{\ell=1}^k U_{\cdot,\ell}(V_{\cdot,\ell})^T$$

with k large - e.g. $k = \min(p, m)$.

Definition of π :

- $U_{\cdot,\ell}, V_{\cdot,\ell} \sim \mathcal{N}(0, \frac{\gamma_{\ell}I}{})$,
- ullet γ_ℓ is itself random, such that most of the $\gamma_\ell \simeq 0$

$$\frac{1}{\gamma_{\ell}} \sim \operatorname{Gamma}(a, b).$$

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. *ICML*.

(truncation of the support of π : remove large values of $M_{i,j}$).

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. *ICML*.

(truncation of the support of π : remove large values of $M_{i,j}$).

T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal Rate under General Sampling Distribution. *Electronic Journal of Statistics*.

(truncation of the support of π : remove large values of $U_{i,k}$ and $V_{i,k}$).

Known results

T. Suzuki (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. *ICML*.

(truncation of the support of π : remove large values of $M_{i,j}$).

T. T. Mai & P. Alquier (2014). A Bayesian Approach for Noisy Matrix Completion : Optimal Rate under General Sampling Distribution. *Electronic Journal of Statistics*.

(truncation of the support of π : remove large values of $U_{i,k}$ and $V_{i,k}$).

In both cases, (in expectation or with large probability),

$$\int \frac{\|M - M^0\|_F^2}{2\sigma^2 mp} \hat{\pi}_{n,\alpha}(\mathrm{d}M) \lesssim \frac{\mathrm{rank}(M^0) \max(m,p) \log(\dots)}{n}.$$

Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. Proceedings of KDD cup and workshop.

Mean-field approximation, \mathcal{F} given by :

$$\rho(\mathrm{d}U,\mathrm{d}V,\mathrm{d}\gamma) = \bigotimes_{i=1}^m \rho_{U_i}(\mathrm{d}U_{i,\cdot}) \bigotimes_{j=1}^p \rho_{V_j}(\mathrm{d}V_{j,\cdot}) \bigotimes_{k=1}^K \rho_{\gamma_k}(\gamma_k).$$

Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. *Proceedings of KDD cup and workshop.*

Mean-field approximation, \mathcal{F} given by :

$$\rho(\mathrm{d}U,\mathrm{d}V,\mathrm{d}\gamma) = \bigotimes_{i=1}^m \rho_{U_i}(\mathrm{d}U_{i,\cdot}) \bigotimes_{j=1}^p \rho_{V_j}(\mathrm{d}V_{j,\cdot}) \bigotimes_{k=1}^K \rho_{\gamma_k}(\gamma_k).$$

It can be shown that

$$\rho_{V_i}$$
 is $\mathcal{N}(\mathbf{n}_{i,\cdot}^T, \mathcal{W}_j)$,

3
$$\rho_{\gamma_k}$$
 is $\Gamma(a + (m_1 + m_2)/2, \beta_k)$,

for some $m \times K$ matrix \mathbf{m} whose rows are denoted by $\mathbf{m}_{i,\cdot}$, some $p \times K$ matrix \mathbf{n} and some vector $\beta = (\beta_1, \dots, \beta_K)$.

The VB algorithm

The parameters are updated iteratively through the formulae

 \bigcirc moments of U:

$$\mathbf{m}_{i,\cdot}^T := \frac{2\alpha}{n} \mathcal{V}_i \sum_{k: i_k = i} Y_{i_k, j_k} \mathbf{n}_{j_k, \cdot}^T.$$

$$\mathcal{V}_i^{-\mathbf{1}} := \frac{2\alpha}{n} \sum_{k: i_k = i} \left[\mathcal{W}_{j_k} + \mathbf{n}_{j_k}, ... \mathbf{n}_{j_k}^T, . \right] + \left(\mathbf{a} + \frac{m_\mathbf{1} + m_\mathbf{2}}{2} \right) \mathrm{diag}(\beta)^{-\mathbf{1}}$$

 \bigcirc moments of V:

$$\mathbf{n}_{j,.}^T := \frac{2\alpha}{n} \mathcal{W}_j \sum_{k:j_k=j} Y_{i_k,j_k} \mathbf{m}_{i_k,.}^T$$

$$\mathcal{W}_j^{-1} := \frac{2\alpha}{n} \sum_{k:i_k=i} \left[\mathcal{V}_{i_k} + \mathbf{m}_{i_k}, \mathbf{m}_{i_k}^T, \right] + \left(\mathbf{a} + \frac{\mathbf{m_1} + \mathbf{m_2}}{2}\right) \mathrm{diag}(\beta)^{-1}$$

lacksquare moments of γ :

$$\beta_k := \frac{1}{2} \left[\sum_{i=1}^{m_1} \left(\mathbf{m}_{i,k}^2 + (\mathcal{V}_i)_{k,k} \right) + \sum_{j=1}^{m_2} \left(\mathbf{n}_{j,k}^2 + (\mathcal{V}_j)_{k,k} \right) \right].$$

Application of our theorem

Theorem

Assume $M = \bar{U}\bar{V}^T$ where

$$ar U=(ar U_{1,\cdot}|\dots|ar U_{r,\cdot}|0|\dots|0)$$
 and $ar V=(ar V_{1,\cdot}|\dots|ar V_{r,\cdot}|0|\dots|0)$

and $\sup_{i,k} |U_{i,k}|, \sup_{j,k} |V_{j,k}| \le B$. Take a > 0 as any constant and $b = \frac{B^2}{512(nmp)^4[(m \lor p)K]^2}$. Then

$$\mathbb{P}\left[\int D_{\alpha}(P_{M}, P_{M^{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}M) \leq \frac{2(\alpha+1)}{1-\alpha}r_{n}\right] \geq 1 - \frac{2}{nr_{n}}$$

where
$$r_n = \frac{C(a, \sigma^2, B)r \max(m, p) \log(nmp)}{n}$$
.

Gaussian VB

• Let $\Theta = \mathbb{R}^p$.

Gaussian VB

- Let $\Theta = \mathbb{R}^p$.
- We start with the family of approximations

$$\mathcal{F}_{\mathcal{G}}^{\Phi} := \left\{ \Phi(d\theta; m, \Sigma), \quad m \in \mathbb{R}^d, \Sigma \in \mathcal{G} \subset \mathcal{S}_+^d(\mathbb{R}) \right\},$$

Gaussian VB

- Let $\Theta = \mathbb{R}^p$.
- We start with the family of approximations

$$\mathcal{F}_{\mathcal{G}}^{\Phi} := \left\{ \Phi(d\theta; m, \Sigma), \quad m \in \mathbb{R}^d, \Sigma \in \mathcal{G} \subset \mathcal{S}_+^d(\mathbb{R}) \right\},$$

• We assume that for a model $\{p_{\theta}, \theta \in \Theta\}$ there exists a measurable real valued function $M(\cdot)$ such that

$$|\log p_{\theta}(X_1) - \log p_{\theta'}(X_1)| \le M(X_1) \|\theta - \theta'\|_2$$

Furthermore we assume that

$$\mathbb{E}M(X_1) =: B_1, \quad \mathbb{E}M^2(X_1) =: B_2 < \infty.$$

Application of the result

Theorem

Let the family of approximation be $\mathcal F$ with $\mathcal F^{\Phi}_{\sigma^2 I} \subset \mathcal F$ as defined above. We put

$$r_n = \frac{B_1}{n} \vee \frac{B_2}{n^2} \vee C\frac{d}{n} \log n$$

Then for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0}) \tilde{\pi}_{n,\alpha}(\mathrm{d}\theta|X_1^n)\right] \leq \frac{1+\alpha}{1-\alpha} r_n.$$

Stochastic Variational Bayes

To implement the idea we write

$$\mathcal{F}_{B}^{\Phi} = \left\{ \Phi(d\theta; m, CC^{t}), \quad (m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d} \right\}.$$

$$F : x = (m, C) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}\left[f(x, \xi) \right] = \mathcal{K}(\rho_{m, C}, \pi_{n})$$
where $\xi \sim \mathcal{N}(0, I_{d})$

Stochastic Variational Bayes

• To implement the idea we write

$$\mathcal{F}_{B}^{\Phi} = \left\{ \Phi(d\theta; m, CC^{t}), \quad (m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d} \right\}.$$

$$F: x = (m, C) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}\left[f(x, \xi) \right] = \mathcal{K}(\rho_{m, C}, \pi_{n})$$
where $\xi \sim \mathcal{N}(0, I_{d})$

The optimization problem can be written

$$\min_{x \in \mathbb{B} \cap \mathbb{R}^d \times \mathcal{S}^d_+} \mathbb{E}\left[f(x, \xi)\right],$$

where

$$f((m,C),\xi) := \log p_{m+C\xi}(Y_1^n) + \log \frac{\mathrm{d}\Phi_{m,CC^t}}{\mathrm{d}\pi}(m+C\xi)$$

We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input:
$$x_0$$
, X_1^n , γ_T

For $i \in \{1, \cdots, T\}$,

a. Sample $\xi_t \sim \mathcal{N}(0, I_d)$

b. Update
$$x_t \leftarrow \mathcal{P}_{\mathbb{B}}\left(x_{t-1} - \gamma_T \nabla f(x_{t-1}, \xi_t)\right)$$
End For

End For .

Output :
$$\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$$

where ∇f is the gradient of the integrand in the objective function

- Assume that f is convex in its first component x and that it has L-Lipschitz gradients.
- Define $\tilde{\pi}_{n,\alpha}^k(\mathrm{d}\theta|X_1^n)$ to be the k-th iterate of the algorithm

$\mathsf{Theorem}$

For some C.

$$r_n = \frac{B_1}{n} \vee \frac{B_2}{n^2} \vee \left\{ \frac{d}{n} \left[\frac{1}{2} \log \left(\vartheta^2 n^2 C \right) + \frac{1}{n \vartheta^2} \right] + \frac{\|\theta_0\|^2}{n \vartheta^2} - \frac{d}{2n} \right\}$$

with $\gamma_k = \frac{B}{1\sqrt{2k}}$, we get

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_0}) \tilde{\pi}_{n,\alpha}^k (\mathrm{d}\theta | X_1^n)\right] \leq \frac{1+\alpha}{1-\alpha} r_n + \frac{1}{n(1-\alpha)} \sqrt{\frac{2BL}{k}}.$$

$$\bullet Y_i = f(X_i) + \xi_i,$$

- $Y_i = f(X_i) + \xi_i$
- $\xi_i \sim \mathcal{N}(0, \sigma^2)$,

- $Y_i = f(X_i) + \xi_i$
- $\xi_i \sim \mathcal{N}(0, \sigma^2)$,
- f is s-smooth with s unknown,

- $Y_i = f(X_i) + \xi_i$
- $\xi_i \sim \mathcal{N}(0, \sigma^2)$.
- f is s-smooth with s unknown,
- prior : $f(\cdot) = \sum_{i=1}^K \beta_j \phi_j(\cdot)$, random K and β_j 's, (φ_j) basis...

- $Y_i = f(X_i) + \xi_i$
- $\xi_i \sim \mathcal{N}(0, \sigma^2)$.
- f is s-smooth with s unknown.
- prior : $f(\cdot) = \sum_{i=1}^K \beta_j \phi_j(\cdot)$, random K and β_j 's, (φ_j) basis...
- variational approx : β_i mutually independent...

Under suitable assumptions,
$$r_n \sim \left(\frac{\log(n)}{n}\right)^{\frac{2s}{2s+1}}$$
.

Mixture models

VB for mixtures

$$\bullet$$
 $P_{p,\theta} = \sum_{i=1}^{K} p_i q_{\theta_i}$,

Mixture models

VB for mixtures

- $\bullet P_{p,\theta} = \sum_{i=1}^{K} p_i q_{\theta_i},$
- \bullet VB approximation : the θ_i 's are mutually independent and independent from (p_1, \ldots, p_K) .

VB for mixtures

- $P_{p,\theta} = \sum_{i=1}^K p_i q_{\theta_i}$
- VB approximation : the θ_i 's are mutually independent and independent from (p_1, \dots, p_K) .

Under suitable assumptions, $r_n \sim \frac{K \log(n)}{n}$.

B.-E. Chérief-Abdellatif, P. Alquier (2018). Consistency of Variational Bayes Inference for Estimation and Model Selection in Mixtures. *Electronic Journal of Statistics*, to appear.

Gibbs posterior / pseudo posterior

 \bullet ℓ a loss function,

Gibbs posterior / pseudo posterior

- \ell a loss function.
- $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d (no parametric model),

Gibbs posterior / pseudo posterior

- ℓ a loss function,
- $(X_1, Y_1), \dots, (X_n, Y_n)$ i.i.d (no parametric model),
- $\{f_{\theta}, \theta \in \Theta\}$ set of predictors.

Gibbs posterior / pseudo posterior

- \ell a loss function.
- $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d (no parametric model),
- $\{f_{\theta}, \theta \in \Theta\}$ set of predictors.

Put
$$r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f_{\theta}(X_i))$$
. The Gibbs posterior :

$$\rho_{\lambda}(\mathrm{d}\theta) \propto \exp\left(-\lambda r_n(\theta)\right) \pi(\mathrm{d}\theta).$$

Gibbs posterior / pseudo posterior

- ℓ a loss function,
- $(X_1, Y_1), \dots, (X_n, Y_n)$ i.i.d (no parametric model),
- $\{f_{\theta}, \theta \in \Theta\}$ set of predictors.

Put
$$r_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f_{\theta}(X_i))$$
. The Gibbs posterior :

$$\rho_{\lambda}(\mathrm{d}\theta) \propto \exp\left(-\lambda r_n(\theta)\right) \pi(\mathrm{d}\theta).$$

Variational approximations of ρ_{λ} ?

Gibbs posterior / pseudo posterior

$$\rho_{\lambda}(\mathrm{d}\theta) \propto \exp\left(-\lambda r_{n}(\theta)\right) \pi(\mathrm{d}\theta).$$

Variational approximations of ρ_{λ} studied in

P. Alquier, J. Ridgway, N. Chopin (2016). On the Properties of Variational Approximations of Gibbs Posteriors. *JMLR*.

Case lpha=1

$$[L(\theta)]^{\alpha} \pi(\mathrm{d}\theta) = L(\theta)\pi(\mathrm{d}\theta)$$

approx $\tilde{\pi}_{n,1}$ of $\pi_{n,1}$...

Case $\alpha = 1$

$$[L(\theta)]^{\alpha} \pi(\mathrm{d}\theta) = L(\theta)\pi(\mathrm{d}\theta)$$

approx $\tilde{\pi}_{n,1}$ of $\pi_{n,1}$...

F. Zhang & C. Gao (2017). Convergence Rates of Variational Posterior Distributions. *Preprint arxiv* :1712.02519.

Theorem (Zhang, Gao) with many approx.!

$$\mathbb{E}_{\theta_0}\Phi_n + \sup_{\theta: \mathcal{K}(P_{\theta_0}, P_{\theta}) \geq r_n} \mathbb{E}_{\theta}(1 - \Phi_n) \leq \exp(-Cnr_n)$$

Theorem (Zhang, Gao) with many approx.!

$$\mathbb{E}_{\theta_0}\Phi_n + \sup_{\theta: \mathcal{K}(P_{\theta_0}, P_{\theta}) \geq r_n} \mathbb{E}_{\theta}(1 - \Phi_n) \leq \exp(-Cnr_n)$$

$$-\log[\pi\{D_{\rho}(P_{\theta},P_{\theta_0}) \leq r_n\}] \leq nr_n \text{ for some } \rho > 1,$$

Theorem (Zhang, Gao) with many approx.!

$$\mathbb{E}_{\theta_0} \Phi_n + \sup_{\theta: \mathcal{K}(P_{\theta_0}, P_{\theta}) \geq r_n} \mathbb{E}_{\theta} (1 - \Phi_n) \leq \exp(-Cnr_n)$$

- **3** $\inf_{\rho \in \mathcal{F}} \frac{1}{\pi} K(\rho, \pi_{n,1}) < r_n$

Theorem (Zhang, Gao) with many approx.!

$$\mathbb{E}_{\theta_0} \Phi_n + \sup_{\theta: \mathcal{K}(P_{\theta_0}, P_{\theta}) \geq r_n} \mathbb{E}_{\theta} (1 - \Phi_n) \leq \exp(-Cnr_n)$$

- **3** $\inf_{\rho \in \mathcal{F}} \frac{1}{\pi} K(\rho, \pi_{n,1}) < r_n$

then
$$\mathbb{E}\int K(P_{\theta_0}, P_{\theta}) \tilde{\pi}_{n,1}(\mathrm{d}\theta) \lesssim r_n$$
.

Introduction : tempered posteriors & variational approx.

Main results

Applications

Application to matrix completion Gaussian VB Other applications and extentions

Thank you!