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Motivation

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurIPS.

1 proposes a fast algorithm
to approximate the
posterior,

2 applies it to train Deep
Neural Networks on
CIFAR-10, ImageNet ...

3 observation : improved
uncertainty quantification.

Objective : provide a theoretical analysis of this algorithm.
First step : simplified versions.

Pierre Alquier, RIKEN AIP Online variational inference



Motivation

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurIPS.

1 proposes a fast algorithm
to approximate the
posterior,

2 applies it to train Deep
Neural Networks on
CIFAR-10, ImageNet ...

3 observation : improved
uncertainty quantification.

Objective : provide a theoretical analysis of this algorithm.
First step : simplified versions.

Pierre Alquier, RIKEN AIP Online variational inference



Motivation

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurIPS.

1 proposes a fast algorithm
to approximate the
posterior,

2 applies it to train Deep
Neural Networks on
CIFAR-10, ImageNet ...

3 observation : improved
uncertainty quantification.

Objective : provide a theoretical analysis of this algorithm.

First step : simplified versions.

Pierre Alquier, RIKEN AIP Online variational inference



Motivation

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota, M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurIPS.

1 proposes a fast algorithm
to approximate the
posterior,

2 applies it to train Deep
Neural Networks on
CIFAR-10, ImageNet ...

3 observation : improved
uncertainty quantification.

Objective : provide a theoretical analysis of this algorithm.
First step : simplified versions.

Pierre Alquier, RIKEN AIP Online variational inference



The sequential prediction problem

Sequential prediction problem

1 1 x1 given
2 predict y1 : ŷ1
3 y1 is revealed

2 1 x2 given
2 predict y2 : ŷ2
3 y2 revealed

3 1 x3 given
2 predict y3 : ŷ3
3 y3 revealed

4 . . .

Objective : make sure that
we learn to predict well as
soon as possible. Keep

T∑
t=1

`(ŷt , yt)

as small as possible, without
unrealistic assumptions on the

data.
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What can we expect ?
As an example, consider for one minute a classification
problem, that is :

yt ∈ {0, 1} and `(ŷt , yt) = 1{yt 6=ŷt}.

1 In the worst case scenario, yt generated by an omniscient
opponent by : yt = 1− ŷt . Then

T∑
t=1

`(ŷt , yt) = T .

2 On the other hand, many real world phenomena can be
“quite well” described by models. These models allow to
do “sensible” predictions.
The extreme case would be the constraint yt = f (xt),
where f ∈ F for a known class F – the realizable case.
Let’s study it as a toy example when F is finite.
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A naive strategy

Here yt = fi∗(xt) where i∗ ∈ {1, . . . ,M} is unknown.

Naive strategy

Start with i(1) = 1 and C (1) = {1, . . . ,M}. At step t,
1 predict ŷt = fi(t)(xt), observe yt ,

2 update
{

C (t + 1) = {i ∈ C (t) : fi(xt) = yt},
i(t + 1) = minC (t + 1).

Theorem

∀T ,
T∑
t=1

`(ŷt , yt) ≤ M − 1.
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The halving algorithm

(Still yt = fi∗(xt) where i∗ ∈ {1, . . . ,M} is unknown).

The halving algorithm

Start with i(1) = 1 and C (1) = {1, . . . ,M}. At step t,
1 predict ŷt = “majority vote in C (t)”, observe yt ,
2 update C (t + 1) = {i ∈ C (t) : fi(xt) = yt}.

Theorem

∀T ,
T∑
t=1

`(ŷt , yt) ≤ log2(M).
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1 predict ŷt = “majority vote in C (t)”, observe yt ,
2 update C (t + 1) = {i ∈ C (t) : fi(xt) = yt}.

Theorem

∀T ,
T∑
t=1
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A feasible objective

Two extremes :
playing against the devil yt = 1− ŷt ,
assuming a true, exact model F .

Real-life is somewhere in between !

Objective
Strategy such that

T∑
t=1

`(ŷt , yt) ≤ inf
f ∈F

T∑
t=1

`(f (xt), yt)︸ ︷︷ ︸
= T in the worst case (devil),
= 0 in the ideal case (true model),
almost always in between.

+ B(T )︸ ︷︷ ︸
as small as possible ! !

.
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Online gradient algorithm (OGA)

Given
a set of predictors {fθ, θ ∈ Θ ⊂ Rd}, e.g fθ(x) = 〈θ, x〉,
an initial guess θ1,

ŷt = fθt (xt) and θt+1 = θt − η∇θ`(fθt (xt), yt).

Note that θt+1 can be obtained by :

1 min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η
,

}

2 min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
.
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Guarantees for OGA
Theorem - classical, see Shalev-Shwarz 2012
Assume ` is convex and L-Lipschitz. Then

T∑
t=1

`t(θt) ≤ inf
θ∈Θ

{
T∑
t=1

`t(θ) + ηTL2 +
‖θ‖2

2η

}
.

S. Shalev-Shwartz (2012). Online learning and online convex optimization. Foundations and
Trends in Machine Learning.

T∑
t=1

`t(θt) ≤ inf
‖θ‖≤B

T∑
t=1

`t(θ) + ηTL2 +
B2

2η
.

The choice η = B/(L
√
2T ) leads to

T∑
t=1

`t(θt) ≤ inf
‖θ‖≤B

T∑
t=1

`t(θ) + BL
√
2T .
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Bayesian learning and variational inference (VI)

πt+1(θ) := π(θ|x1, y1, . . . , xt , yt) ∝ exp

(
−η

t∑
s=1

`s(θ)

)
π(θ).

Not tractable in general, leading to variational approximations :

π̃t+1(θ) = arg min
q∈F

KL(q, πt+1)

= arg min
q∈F

{
Eθ∼q

[
t∑

s=1

`s(θ)

]
+

KL(q, π)

η

}
.

Formula for the online update of πt+1 :

πt+1(θ) ∝ exp (−η`t(θ))πt(θ).

Q1 : can we similarty define a sequential update for a
variational approximation ?
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Regret bounds for Bayesian inference

Theorem - classical, see Cesa-Bianchi & Lugosi 06
Under the assumption that the loss is bounded by B , the
Bayesian update leads to

T∑
t=1

Eθ∼πt [`t(θ)]

≤ inf
q

{
T∑
t=1

Eθ∼q[`t(θ)] +
ηB2T

8
+

KL(q, π)

η

}
.

N. Cesa-Bianchi & G. Lugosi (2006). Prediction, learning and games. Cambridge.
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Explicit regret bounds

T∑
t=1

Eθ∼πt [`t(θ)]

≤ inf
q

{
T∑
t=1

Eθ∼q[`t(θ)] +
ηB2T

8
+

KL(q, π)

η

}
.

Example 1 : finite set card(Θ) = M , prior π uniform.
Consider q = δϑ. Then :

T∑
t=1

Eθ∼πt [`t(θ)] ≤ inf
ϑ

T∑
t=1

`t(ϑ) +
ηB2T

8
+

log(M)

η
.

The choice η =
√

8 log(M)/(TB2) leads to
T∑
t=1

Eθ∼πt [`t(θ)] ≤ inf
ϑ

T∑
t=1

`t(ϑ) + B

√
T log(M)

2
.
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Explicit regret bounds (2/2)

Example 2 : When Θ = Rd , using Gaussian priors and
Gaussian q, and η ∼

√
T “usually” leads to

T∑
t=1

Eθ∼πt [`t(θ)] ≤ inf
‖θ‖≤B

T∑
t=1

`t(θ) +O(
√
dT log(T )).

T∑
t=1

Eθ∼πt [`t(θ)]

≤ inf
q

{
T∑
t=1

Eθ∼q[`t(θ)] +
ηB2T

8
+

KL(q, π)

η

}
.

Q2 : can we derive similar results for online VI ?
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Two options for online VI
Parametric VI : F = {qµ, µ ∈ M}.

1 Sequential Variational Approximation (SVA) :

θt+1 = arg min
θ

{〈
θ,

t∑
s=1

∇θ`s(θs)

〉
+
‖θ − θ1‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,

t∑
s=1

∇µEθ∼qµs [`s(θ)]

〉
+

KL(qµ, π)

η

}
.

2 Streaming Variational Bayes (SVB) :

θt+1 = arg min
θ

{〈
θ,∇θ`t(θt)

〉
+
‖θ − θt‖2

2η

}
,

µt+1 = arg min
µ

{〈
µ,∇µEθ∼qµt [`t(θ)]

〉
+

KL(qµ, qµt )

η

}
.
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SVA & SVB are tractable, and not equivalent
Example : Gaussian prior θ ∼ π = N (0, s2I ) and mean-field
Gaussian approximation, µ = (m, σ).

SVA : mt+1 ← mt − ηs2ḡmt , gt+1 ← gt + ḡσt ,

σt+1 ← h (ηsgt+1) s,

SVB : mt+1 ← mt − ησ2t ḡmt ,

σt+1 ← σth (ησt ḡσt )

where h(x) :=
√
1 + x2 − x is applied componentwise, as well

as the multiplication of two vectors, and

ḡmt =
∂

∂m
Eθ∼πmt ,σt

[`t(θ)],

ḡσt =
∂

∂σ
Eθ∼πmt ,σt

[`t(θ)].
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Theoretical analysis of SVA

Theorem 1
Assume

1 µ 7→ Eθ∼qµ[`t(θ)] is L-Lipschitz and convex,
2 µ 7→ KL(qµ, π) is α-strongly convex, then
T∑
t=1

Eθ∼qµt [`t(θ)]

≤ inf
µ∈M

{
T∑
t=1

Eθ∼qµ[`t(θ)] +
ηL2T

α
+

KL(qµ, π)

η

}
.

Application to Gaussian approximation leads to
T∑
t=1

Eθ∼qµt [`t(θ)] ≤ inf
θ

T∑
t=1

`t(θ) + (1 + o(1))
2L
α

√
dT log(T ).
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Comments on the assumptions

The assumptions :
1 µ 7→ Eθ∼qµ[`t(θ)] is L-Lipschitz and convex ?

Proposition
Assume θ 7→ `t(θ) is L/2-Lipschitz and convex, and
µ = (m,Σ) is a location scale parameter, then : satisfied.

Proof : Lipschitz : in our paper ; convex :

J. Domke (2019). Provable smoothness guarantees for black-box variational inference.. Preprint
arXiv.

2 µ 7→ KL(qµ, π) is α-strongly convex ?

→ True for many examples, for example when qµ and π
are Gaussian (with lower and upper-bounded variance).
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Theoretical analysis of SVB

Theorem 2
1 We use Gaussian approximation qµ with µ in a bounded

set (diameter = D),
2 µ 7→ Eθ∼qµ[`t(θ)] is L-Lipschitz and convex,
3 µ 7→ KL(qµ, π) is α-strongly convex, then

SVB with adequate η leads to

T∑
t=1

`t

(
Eθ∼qµt (θ)

)
≤ inf

θ

T∑
t=1

`t(θ) + DL
√
2T .

If, moreover, the loss is H-strongly convex,

T∑
t=1

`t

(
Eθ∼qµt (θ)

)
≤ inf

θ

T∑
t=1

`t(θ) +
L2(1 + log(T ))

H
.
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Test on a simulated dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Test on the Breast dataset

Figure – Average cumulative losses on different datasets for
classification and regression tasks with OGA (yellow), OGA-EL
(red), SVA (blue), SVB (purple) and NGVI (green).
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Open questions

1 Analysis of SVB in the general case.
2 Analysis of the uncertainty quantification.
3 NGVI is the next step in going closer to algorithms used

to train Neural Networks with Bayesian principles. But it
does not satisfy our assumptions...

Pierre Alquier, RIKEN AIP Online variational inference



Open questions

1 Analysis of SVB in the general case.

2 Analysis of the uncertainty quantification.
3 NGVI is the next step in going closer to algorithms used

to train Neural Networks with Bayesian principles. But it
does not satisfy our assumptions...

Pierre Alquier, RIKEN AIP Online variational inference



Open questions

1 Analysis of SVB in the general case.
2 Analysis of the uncertainty quantification.

3 NGVI is the next step in going closer to algorithms used
to train Neural Networks with Bayesian principles. But it
does not satisfy our assumptions...

Pierre Alquier, RIKEN AIP Online variational inference



Open questions

1 Analysis of SVB in the general case.
2 Analysis of the uncertainty quantification.
3 NGVI is the next step in going closer to algorithms used

to train Neural Networks with Bayesian principles. But it
does not satisfy our assumptions...

Pierre Alquier, RIKEN AIP Online variational inference



NGVI

Assume we use approximations in the exponential family

qλ(θ) = a(θ)b(λ) exp [〈λ, S(θ)〉] .

We can re-parametrize this set with µ = Eθ∼qλ[T (θ)] = F (λ).
The NGVI algorithm is given by

λt+1 = (1− ρ)λt + ρ∇µEθ∼qµt [`t(θ)] ,

M. E. Khan, D. Nielsen (2018). Fast yet Simple Natural-Gradient Descent for Variational
Inference in Complex Models. ISITA.

Problem : under this parametrisation, µ 7→ Eθ∼qλ[`t(θ)] is
generally not convex...
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Thank you !
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