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Reminder on the notations

From now, and until Section 3, we will focus on parametric
estimation in statistics.

Assume that we observe X1, . . . , Xn i.i.d from P0 in a model
{Pθ, θ ∈ Θ} with p.d.f pθ. Prior π on Θ. Until Section 3, we
also assume a correct specification : P0 = Pθ0 .

The likelihood

Ln(θ) =
n∏

i=1

pθ(Xi)

The tempered posterior - 0 < α < 1

πn,α(dθ) ∝ [Ln(θ)]απ(dθ).
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Concentration of the posterior

Do we have for some d , ∀t > 0

Pθ∼πn,α
[
d(θ, θ0) ≥ t

]
−−−→
n→∞

0 ?
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A simpler result

We will state a simpler results than the concentration
theorems in this book, by following ideas from

A. Bhattacharya, D. Pati & Y. Yang (2019). Bayesian fractional posteriors. The Annals of
Statistics.

Definition - Rényi divergence
Assume that P and Q have respective densities p and q with
respect to a measure µ, define, for 0 < α < 1,

Dα(P ,R) =
1

α− 1
log

∫
q(x)1−αp(x)αµ(dx).

We use d(θ, θ0) = Dα(Pθ,Pθ0) to measure the concentration.
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Properties of the Rényi divergence

It is important to note that Dα(P ,Q) does not depend on the
choice of µ as can be “seen” from

Dα(P ,R) =
1

α− 1
log

∫
(dQ)1−α(dP)α.

Many properties derived in :

T. Van Erven & P. Harremos. Rényi divergence and Kullback-Leibler divergence. IEEE
Transactions on Information Theory, 2014.

Among others, for 1/2 ≤ α, link with Hellinger and Kullback :

H2(P ,R) ≤ Dα(P ,R) −−→
α↗1

K(P ,R).
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A theorem in expectation

Define
B(r) = {θ ∈ Θ : K(Pθ0 ,Pθ) ≤ r} .

Theorem (BPY 19, simplified version)

For any sequence (rn) such that rn ≥ 0 and

− log π[B(rn)] ≤ nrn

we have

EX1,...,Xn

{
Eθ∼πn,α

[
Dα(Pθ,Pθ0)

]}
≤ 1 + α

1− α
rn.
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From expectation to concentration

From the previous result, we can recover concentration results
by a simple application of Markov inequality :

Pθ∼πn,α
[
Dα(Pθ,Pθ0) ≥ t

]
≤

Eθ∼πn,α
[
Dα(Pθ,Pθ0)

]
t

,

EX1,...,Xn

{
Pθ∼πn,α

[
Dα(Pθ,Pθ0) ≥ t

]}
≤ (1 + α)

(1− α)t
rn −−−→

n→∞
0,

Pθ∼πn,α
[
Dα(Pθ,Pθ0) ≥ t

]
proba.−−−→
n→∞

0.
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Generalization to variational approximations

In the following paper, we extended BPY’s approach to
variational approximations.

P. Alquier & J. Ridgway (2017). Concentration of tempered posteriors and of their variational
approximations. The Annals of Statistics (to appear), preprint arxiv :1706.09293.

Reminder :

π̃n,α = arg min
ρ∈F

K(ρ, πn,α).
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Concentration of VB

Theorem - AR 17
Assume that there is (rn) and ρn ∈ F such that

Eθ∼ρn
[
K(Pθ0 ,Pθ)

]
≤ rn

and
K(ρn, π) ≤ nrn.

Then, for any α ∈ (0, 1),

EX1,...,Xn

{
Eθ∼π̃n,α

[
Dα(Pθ,Pθ0)

]}
≤ 1 + α

1− α
rn.
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Proof (1/2)

Define the log-likelihood ratio : rn(θ, θ0) =
n∑

i=1

log
pθ0(Xi)

pθ(Xi)
.

1 Its expectation :

EX1,...,Xn [rn(θ, θ0)] = nK(Pθ0 ,Pθ).

2 Its exponential moment :

EX1,...,Xn {exp [−αrn(θ, θ0)]} =
n∏

i=1

∫ (
pθ(xi)

pθ0(xi)

)α
pθ0(xi)dxi

=
n∏

i=1

exp

[
log

∫
pθ(xi)

αpθ0(xi)
1−αdxi

]
= exp [−n(1− α)Dα(Pθ,Pθ0)] .
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Proof (2/2)

Start from the exponential moment :

EX1,...,Xn {exp [−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)]} = 1.
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EX1,...,Xn {exp [−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)]} = 1.

Expectation w.r.t θ ∼ π and Fubini :

EX1,...,XnEθ∼π {exp [−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)]} = 1.

Then :

EX1,...,XnEθ∼π̃n,α
{

exp
[
−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)

+ log
( π(θ)

π̃n,α(θ)

)]}
= 1.

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 2



Concentration of the posterior
Concentration of variational approximations

Further results

Theorem for variational approximation
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Applications

Proof (2/2)
Then :

EX1,...,XnEθ∼π̃n,α
{

exp
[
−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)

+ log
( π(θ)

π̃n,α(θ)

)]}
= 1.

Jensen’s inequality :

exp

{
EX1,...,XnEθ∼π̃n,α

[
−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)

+ log
( π(θ)

π̃n,α(θ)

)]}
≤ 1.
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Proof (2/2)
Jensen’s inequality :

exp

{
EX1,...,XnEθ∼π̃n,α

[
−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)

+ log
( π(θ)

π̃n,α(θ)

)]}
≤ 1.

Rearranging :

EX1,...,XnEθ∼π̃n,α [Dα(Pθ,Pθ0]

≤ 1
n(1− α)

EX1,...,Xn

{
αEθ∼π̃n,α [rn(θ, θ0)] +K(π̃n,α, π)︸ ︷︷ ︸

}
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Proof (2/2)
Jensen’s inequality :

exp

{
EX1,...,XnEθ∼π̃n,α

[
−αrn(θ, θ0) + n(1− α)Dα(Pθ,Pθ0)

+ log
( π(θ)

π̃n,α(θ)

)]}
≤ 1.

Rearranging :

EX1,...,XnEθ∼π̃n,α [Dα(Pθ,Pθ0]

≤ 1
n(1− α)

EX1,...,Xn

{
αEθ∼π̃n,α [rn(θ, θ0)] +K(π̃n,α, π)︸ ︷︷ ︸

=−αELBO(π̃n,α)+ constant

}
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Proof (2/2)
Rearranging :

EX1,...,XnEθ∼π̃n,α [Dα(Pθ,Pθ0]

≤ 1
n(1− α)

EX1,...,Xn

{
αEθ∼π̃n,α [rn(θ, θ0)] +K(π̃n,α, π)︸ ︷︷ ︸

=−αELBO(π̃n,α)+ constant

}

As πn,α minimizes the ELBO :

EX1,...,XnEθ∼π̃n,α [Dα(Pθ,Pθ0]

≤ 1
n(1− α)

EX1,...,Xn

{
inf
ρ∈F

[
αEθ∼ρ [rn(θ, θ0)] +K(ρ, π)

]}
≤ 1

n(1− α)
inf
ρ∈F

{
nαEθ∼ρ

[
K(Pθ0 ,Pθ)

]
+K(ρ, π)

}
.
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Proof (2/2)

As πn,α minimizes the ELBO :

EX1,...,XnEθ∼π̃n,α [Dα(Pθ,Pθ0]

≤ 1
n(1− α)

EX1,...,Xn

{
inf
ρ∈F

[
αEθ∼ρ [rn(θ, θ0)] +K(ρ, π)

]}
≤ 1

n(1− α)
inf
ρ∈F

{
nαEθ∼ρ

[
K(Pθ0 ,Pθ)

]
+K(ρ, π)

}
.

We end the proof by using the assumption that there is a
ρ ∈ F such that Eθ∼ρ[K(Pθ0 ,Pθ)] ≤ rn and K(ρ, π) ≤ nrn :

EX1,...,XnEθ∼π̃n,α
[
Dα(Pθ,Pθ0)

]
≤ 1

n(1− α)
[αnrn + nrn] =

1 + α

1− α
rn.
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A toy example : Gaussian variables
Toy example : assume that X1, . . . ,Xn are i.i.d from
Pθ0 = N (θ0, 1).

Cauchy prior θ ∼ π = C(0, 1).
Gaussian approximation of the posterior :

F =
{
N (m, σ2),m ∈ R, σ2 > 0

}
.

Note that K(Pθ0 ,Pθ) = |θ − θ0|2/2 and so

Eθ∼N (m,σ2)

[
K(Pθ0 ,Pθ)

]
=
|m − θ0|2 + σ2

2

≤ rn?

Moreover, rough upper bounds lead to

K(N (m, σ2), π) ≤ log

(√
π

2σ2

)
+log(1+2m2)+

√
2σ2

π

≤ nrn?
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Gaussian example (continued)

|m − θ0|2 + σ2

2
≤ rn

log

(√
π

2σ2

)
+ log(1 + 2m2) +

√
2σ2

π
≤ nrn

For example satisfied by m = θ0, σ2 = 1/n and

rn =
1
2 log

(
nπ
2

)
+ log(1 + 2θ20) +

√
π
2

n
.

We can apply our theorem :

EX1,...,Xn

{
Eθ∼π̃n,α

[
Dα(Pθ,Pθ0)

]}
≤ 1 + α

1− α
rn.
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Gaussian example (continued)

EX1,...,Xn

{
Eθ∼π̃n,α

[
Dα(Pθ,Pθ0)

]}
≤ 1 + α

1− α
rn.

Here, we have actually

Dα(Pθ,Pθ0) =
|θ − θ0|2

2α
.

EX1,...,Xn

{
Eθ∼π̃n,α

[
|θ − θ0|2

]}

≤
(
α(1 + α)

1− α

) 1
2 log

(
nπ
2

)
+ log(1 + 2θ20) +

√
π
2

n
.
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Second example : matrix completion

Claire 4 ? 3 . . .
Nial ? 4 ? . . .

Brendon ? 5 4 . . .
Andrew ? 4 ? . . .
Adrian 1 ? ? . . .
Damien ? 1 ? . . .

...
...

...
... . . .
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Matrix completion (continued)

Reminder on matrix completion :

M =
k∑
`=1

U·,`(V·,`)
T is p ×m

with prior π given by
U·,`,V·,` ∼ N (0, γ`I ),
1
γ`
∼ Gamma(a, b).

Mean-field variational ap-
proximation with Gaussian
and inverse gamma disitribu-
tions on U , V and γ` respec-
tively.
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Matrix completion : rate of convergence

EX1,...,Xn

{
Eθ∼π̃n,α

[
Dα(PM ,PM0)

]}

= O
(

rank(M0)(m + p) + log(nmp)

n

)
.
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Generalization to variational approximations

1 Concentration of the posterior
Reminder on the notations
Theorems on the concentration of the posterior

2 Concentration of variational approximations
Theorem for variational approximation
Proof
Applications

3 Further results
Further results in statistical estimation
Further results in machine learning
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Misspecified case

Assume we observe X1, . . . , Xn i.i.d from P0 and use a model
M = {Pθ, θ ∈ Θ}, but it is possible that P0 /∈M.

Theorem - AR 17
Assume that there is (rn) and ρn ∈ F such that

Eθ∼ρ
{
EX∼P0

[
log

(
pθ∗(x)

pθ(x)

)]}
≤ rn

and K(ρn, π) ≤ nrn. Then

EX1,...,Xn

{
Eθ∼π̃n,α

[
Dα(Pθ,P

0)
]}
≤ α

1− α
K(Pθ∗ ,P

0)+
1 + α

1− α
rn.
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Model selection
Assume that we have K models, define π̃k

n,α a variational
approximation of the tempered posterior in model k , and r

(k)
n

its convergence rate if model k is correct. Put :

k̂ = arg max
k

ELBO(π̃(k)
n,α).

Theorem
If the true model is actually k0,

E
[ ∫

Dα(Pθ,P
0)π̃k̂

n,α(dθ)

]
≤ 1 + α

1− α
r (k0)
n +

log(K )

n(1− α)
.

This result is actually due to
my PhD student :

B.-E. Chérief-Abdellatif (2018).
Consistency of ELBO maximization for
model selection. AABI.
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Models with hidden variables (1/2)

The results presented so far do not include approximations in
models with hidden variables.

VB for mixtures

Pp,θ =
∑K

i=1 piqθi ,
VB approximation : the θi ’s are mutually independent and
independent from (p1, . . . , pK ).

Under suitable assumptions, rn ∼ K log(n)
n

.

B.-E. Chérief-Abdellatif, P. Alquier (2018). Consistency of Variational Bayes Inference for
Estimation and Model Selection in Mixtures. Electronic Journal of Statistics.
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Models with hidden variables (2/2)

For a general approach for models with hidden variables,
including

1 mixture models,
2 hidden Markov chains,
3 . . .

see :

Y. Yang, D. Pati & A. Bhattacharya (2017). α-Variational Inference with Statistical Guarantees.
The Annals of Statistics (to appear), preprint arXiv :1712.08983.
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The case α = 1

Our paper does not cover the case α = 1 :

Case α = 1

[Ln(θ)]α π(dθ) = Ln(θ)π(dθ)

Covered in the following paper – note that this case requires
much stronger assumptions :

F. Zhang & C. Gao (2017). Convergence Rates of Variational Posterior Distributions. Preprint
arxiv :1712.02519.
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More general machine learning problem

Reminder of the context of machine learning :
1 X1, . . . ,Xn i.i.d from P0,
2 R(θ) = EX∼P0[`(θ,X )].

3 Rn(θ) = 1
n

∑n
i=1 `(θ,Xi).

Gibbs posterior, EWA, ...

πn,α(θ) ∝ exp[−αnRn(θ)]π(θ).

We define a variational approximation of the Gibbs posterior :

π̃n,α(θ) = arg min
ρ∈F

K(ρ, πn,α).
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Variational approximation of Gibbs posteriors
Bounds on the generalization error of the variational
approximation of the Gibbs posterior

Eθ∼π̃n,α [R(θ)]

provided in the paper :

P. Alquier, J. Ridgway , N. Chopin (2016). On the Properties of Variational Approximations of
Gibbs Posteriors. JMLR.
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Neural networks

Source : Wikipedia.

Prior π : independent

θ
(`)
i ,j ∼ N (0, σ2` ).

Variational approximation :
independent

θ
(`)
i ,j ∼ N (m

(`)
i ,j , (σ

(`)
i ,j )2).
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Neural networks for non parametric regression

Badr-Eddine Chérief-Abdellatif proved that, in regression with
quadratic loss, suitable neural networks estimate β-Hölder
functions at rate :

O
(

log(n)2

n
2β

2β+1

)
.

B.-E. Chérief-Abdellatif (2018). Convergence Rates of Variational Inference in Sparse Deep
Learning. Preprint arXiv :1908 :04847.
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Thank you !

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 2


	Concentration of the posterior
	Reminder on the notations
	Theorems on the concentration of the posterior

	Concentration of variational approximations
	Theorem for variational approximation
	Proof
	Applications

	Further results
	Further results in statistical estimation
	Further results in machine learning


