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Statistical learning problem

1 We observe X1, . . . ,Xn i.i.d from P0 unknown in X .

2 We have a loss function

` : Θ×X → R+.

3 Objective : base on the sample, learn θ0 ∈ Θ which
minimizes the risk

R(θ) = EX∼P0[`(θ,X )].
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Example 1 : supervised classification

1 We observe X1 = (Z1,Y1), . . . ,Xn = (Zn,Yn) i.i.d from
P0 unknown in Rd × {0, 1}.

2 Consider a set of predictors (fθ, θ ∈ Θ) with
fθ : Rd → {0, 1} and

`(θ, (z , y)) = 1y 6=fθ(z) =

{
0 if y = fθ(z),
1 if y 6= fθ(z).

3 Objective : learn θ0 ∈ Θ which minimizes the
classification error

R(θ) = EX∼P0[`(θ,X )] = P(Z ,Y )∼P0[Y 6= fθ(Z )].
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Example 2 : parametric estimation

1 We observe X1, . . . ,Xn i.i.d from P0 unknown in X , with
p.d.f p0.

2 Consider a parametric family of probability distributions :
(Pθ, θ ∈ Θ) with p.d.f pθ and

`(x , θ) = − log pθ(x) = log

(
1

pθ(x)

)
.

3 Objective : learn θ0 ∈ Θ which minimizes

the Kullback
divergence

R(θ)
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Example 2 : MLE and Bayesian inference

R(θ) = −EX∼P0 [log (pθ(X ))] .

Estimator of R(θ) : Rn(θ) = −1
n

n∑
i=1

log (pθ(Xi)) = − log(Ln(θ))

n
.

MLE Bayesian inference

θ̂ = arg minθ∈Θ Rn(θ)
prior π(θ)

π(θ|X1, . . . ,Xn) = Ln(θ)π(θ)∫
Ln(θ)π(θ)dθ

The posterior

π(θ|X1, . . . ,Xn) ∝ exp[−nRn(θ)]π(θ).
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General solution : Gibbs posterior

For the general machine learning problem :
1 X1, . . . ,Xn i.i.d from P0,
2 R(θ) = EX∼P0[`(θ,X )].

Define

Rn(θ) =
1
n

n∑
i=1

`(θ,Xi).

Gibbs posterior, EWA, ...

πn,α(θ) ∝ exp[−αnRn(θ)]π(θ).
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Back to Example 2 : tempered posteriors

Note : in the case of parametric estimation,

πn,α(θ) ∝ exp[−αnRn(θ)]π(θ) = exp

[
α

n∑
i=1

log pθ(Xi)

]
π(θ).

The tempered posterior

πn,α(θ) ∝ [Ln(θ)]απ(dθ).

Tempered posteriors are actually very useful for statistical
inference.
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Back to Example 2 : tempered posteriors

easier to sample from.

R.M. Neal. (1996). Sampling from multimodal distributions using tempered transitions. Statistics
and Computing.

G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

more robust to model misspecification.

P. Grünwald and T. Van Ommen (2017). Inconsistency of Bayesian inference for misspecified
linear models, and a proposal for repairing it. Bayesian Analysis.

theoretical analysis simpler.

A. Bhattacharya, D. Pati & Y. Yang (2019). Bayesian fractional posteriors. The Annals of
Statistics.
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Notation – summary

1 We observe X1, . . . ,Xn i.i.d from P0 unknown in X .

2 Loss function `.
3 Minimize R(θ) = EX∼P0[`(θ,X )].

4 Empirical risk

Rn(θ) =
1
n

n∑
i=1

`(θ,Xi).

5 Temperature α > 0, Gibbs or tempered posterior

πn,α(θ) ∝ exp[−αnRn(θ)]π(θ).
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Computational problem

Apart from a few classical examples, πn,α is intractable.

Popular methods to compute / sample from the (tempered)
posterior :

Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo, ABC
etc.
optimization methods : variational approximations or
variational inference (VI) and expectation-propagation
(EP).
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Roadmap

I) Lecture 1 : approximate Bayesian inference in ML.
1 Introduction.
2 Definition of VI.
3 Examples of VI.

II) Lecture 2 : statistical analysis of VI.
With theorems and all !

III) Seminar (Thursday next week) : online VI.
For data streams or large-scale learning.

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Introduction : computational issues in Bayesian learning
Variational Approximations : Definition

Examples of Variational Approximations in Machine Learning

Bayesian learning
Computational issues
Roadmap

Roadmap

I) Lecture 1 : approximate Bayesian inference in ML.
1 Introduction.
2 Definition of VI.
3 Examples of VI.

II) Lecture 2 : statistical analysis of VI.
With theorems and all !

III) Seminar (Thursday next week) : online VI.
For data streams or large-scale learning.

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Introduction : computational issues in Bayesian learning
Variational Approximations : Definition

Examples of Variational Approximations in Machine Learning

Bayesian learning
Computational issues
Roadmap

Roadmap

I) Lecture 1 : approximate Bayesian inference in ML.
1 Introduction.
2 Definition of VI.
3 Examples of VI.

II) Lecture 2 : statistical analysis of VI.
With theorems and all !

III) Seminar (Thursday next week) : online VI.
For data streams or large-scale learning.

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Introduction : computational issues in Bayesian learning
Variational Approximations : Definition

Examples of Variational Approximations in Machine Learning

Bayesian learning
Computational issues
Roadmap

Lecture 1

1 Introduction : computational issues in Bayesian learning
Bayesian learning
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2 Variational Approximations : Definition
Definition of VI
The ELBO
Strategies for ELBO maximization

3 Examples of Variational Approximations in Machine
Learning

Recommender systems and matrix completion
Deep learning
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Reminder on Kullback divergence

Definition – Kullback divergence
Let P and Q be two probability distributions with p.d.f p and
q respectively. Then :

K(P ,Q) = EU∼P

[
log

(
dP
dQ

(U)

)]
=

∫
log

(
p(u)

q(u)

)
p(u)du.

Theorem
K(P ,Q) ≥ 0 and K(P ,Q) = 0⇔ P = Q.

Proof :

K(P ,Q) = −
∫

log

(
q(u)

p(u)

)
p(u)du

≥ − log

(∫ [
q(u)

p(u)

]
p(u)du

)
≥ log(1) = 0.
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Introduction : computational issues in Bayesian learning
Variational Approximations : Definition

Examples of Variational Approximations in Machine Learning

Definition of VI
The ELBO
Strategies for ELBO maximization

Definition of VI

1 Chose a tractable family F of probability distributions on
the parameter θ,

2 Define
π̃n,α = arg min

ρ∈F
K(ρ, πn,α).

Examples of F :
parametric approximation

F =
{
N (µ,Σ) : µ ∈ Rd ,Σ ∈ S+

d

}
.

mean-field approximation, θ = (θ1, θ2) ∈ Θ = Θ1 ×Θ2,

F : {ρ : ρ(dθ) = ρ1(dθ1)⊗ ρ2(dθ2)} .
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Definition of VI
The ELBO
Strategies for ELBO maximization

The ELBO

0 ≤ K(ρ, πn,α)

= Eθ∼ρ
[

log

(
dρ

dπn,α
(θ)

)]

= Eθ∼ρ
[

log

(
dρ
dπ

(θ)
Eθ∼π [exp(−nαRn(θ))]

exp(−nαRn(θ))

)]
= nαEθ∼ρ [Rn(θ)] +K(ρ, π) + logEθ∼π [exp(−nαRn(θ))] .

That is,

Evidence = logEθ∼π [exp(−nαRn(θ))]

≥ −nαEθ∼ρ [Rn(θ)]−K(ρ, π)

= ELBO(ρ) (Evidence Lower Bound).
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Definition of VI
The ELBO
Strategies for ELBO maximization

Alternative definition of VI with ELBO

We end up with two definitions of VI.

1 best approximation of the posterior

π̃n,α = arg min
ρ∈F

K(ρ, πn,α),

2 maximization of the evidence lower bound

π̃n,α = arg max
ρ∈F

ELBO(ρ)

= arg max
ρ∈F

{−nαEθ∼ρ [Rn(θ)]−K(ρ, π)} .
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Introduction : computational issues in Bayesian learning
Variational Approximations : Definition

Examples of Variational Approximations in Machine Learning

Definition of VI
The ELBO
Strategies for ELBO maximization

Donsker and Varadhan’s variational inequality

Remark : from the above inequality

0 ≤ K(ρ, πn,α) = −ELBO(ρ) + evidence,

it is clear that without the constraint ρ ∈ F , the ELBO is
maximized by ρ = πn,α.

Theorem : Donsker and Varadhan’s variational inequality

Eθ∼πn,α[Rn(θ)] +
K(πn,α, π)

nα
= inf

ρ

{
Eθ∼ρ[Rn(θ)] +

K(ρ, π)

nα

}
.
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Variational Approximations : Definition

Examples of Variational Approximations in Machine Learning

Definition of VI
The ELBO
Strategies for ELBO maximization

How to maximize the ELBO?

Parametric variational inference : F = {qλ, λ ∈ Λ}.

Gradient algorithm

λt+1 = λt + η∇ELBO(qλt ).

Usually, the gradient is not available in closed-form but often it
is possible to build an unbiased estimate of it : ∇̂ELBO(qλt ).

Stochastic gradient algorithm

λt+1 = λt + η∇̂ELBO(qλt ).
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Definition of VI
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Stochastic gradient of the ELBO
Ex : qλ = N (µ, σ2I ), λ = (µ, σ) ∈ Rd × R∗+, π = N (0, I ).

ELBO(qλ)

= −Eθ∼qλ [nαRn(θ)]−K(qλ, π)

= −Eθ∼N (0,I ) [nαRn(µ + σθ)]− ‖µ‖
2 + k(σ2 − log(σ2)− 1)

2
and so, under for a smooth Rn,

∇ELBO(qλ) = −Eθ∼N (0,I ) [nα∇λRn(µ + σθ)]−
(

µ
k
2

(
σ − 2

σ

) ) ,
∇̂ELBO(qλ) = −

(
nα
m

∑m
j=1∇Rn(µ + σθj) + µ

nα
m

∑m
j=1θj∇Rn(µ + σθj) + k

2

(
σ − 2

σ

) ) .
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Definition of VI
The ELBO
Strategies for ELBO maximization

Mean-field approximation

Mean-field variational approximation :

F : {ρ : ρ(dθ) = ρ1(dθ1)⊗ ρ2(dθ2)} .

Alternate optimization

ρt+1
1 = arg max

ρ1

ELBO(ρ1 × ρt2)

ρt+1
2 = arg max

ρ2

ELBO(ρt+1
1 × ρ2)
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Definition of VI
The ELBO
Strategies for ELBO maximization

Mean-field approximation : explicit formula

ρt+1
1 = arg max

ρ1

ELBO(ρ1 ⊗ ρt2)

Assume π = π1 × π2.

max
ρ1

{
αnEθ1∼ρ1Eθ2∼ρt2[Rn(θ1, θ2)] +K(ρ1, π1) +K(ρt2, π2)

}
.

Use Donsker and Varadhan’s variational formula.

ρt+1
1 (θ1) ∝ exp

[
−nαEθ2∼ρt2[Rn(θ1, θ2)|θ1]

]
π1(θ1).
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Further reading

Recent survey on variational inference :

D. M. Blei, A. Kucukelbir & J. D. McAuliffe (2017). Variational inference : A review for
statisticians. Journal of the American Statistical Association.
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Deep learning

Examples

1 Introduction : computational issues in Bayesian learning
Bayesian learning
Computational issues
Roadmap

2 Variational Approximations : Definition
Definition of VI
The ELBO
Strategies for ELBO maximization

3 Examples of Variational Approximations in Machine
Learning

Recommender systems and matrix completion
Deep learning
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Recommender systems and matrix completion
Deep learning

Example 1 : recommendation via matrix completion

Claire 4 ? 3 . . .
Nial ? 4 ? . . .

Brendon ? 5 4 . . .
Andrew ? 4 ? . . .
Adrian 1 ? ? . . .
Damien ? 1 ? . . .

...
...

...
... . . .
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Recommender systems and matrix completion
Deep learning

The Netflix challenge

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Introduction : computational issues in Bayesian learning
Variational Approximations : Definition

Examples of Variational Approximations in Machine Learning

Recommender systems and matrix completion
Deep learning

Matrix completion : notations

The parameter θ is a matrix M0 ∈ Rm×p, with m, p ≥ 1.

Under PM , the observations are random entries of this matrix
with possible noise :

Yi = M0
ik ,jk

+ εk

where the (ik , jk) are i.i.d U({1, . . . ,m} × {1, . . . , p}). Assume
that the εk are i.i.d N (0, σ2), σ2 known. We have

K(PM ,PN) =
1
mp

m∑
i=1

p∑
j=1

(Mi ,j − Ni ,j)
2

2σ2
=
‖M − N‖2F
2σ2mp

.

Usual assumption : M0 is low-rank.
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(Mi ,j − Ni ,j)
2

2σ2
=
‖M − N‖2F
2σ2mp

.

Usual assumption : M0 is low-rank.
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Prior specification - main idea

Define :

M︸︷︷︸
p×m

= U︸︷︷︸
p×k

V T︸︷︷︸
k×m

.

Let U·,` ∼ N (0, γI ) denote the `-th column of M , we have :

M =
k∑
`=1

U·,`(V·,`)
T ⇒ rank(M) ≤ k .
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Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML.

M =
k∑
`=1

U·,`(V·,`)
T

with k large - e.g. k = min(p,m).

Definition of π :
U·,`,V·,` ∼ N (0, γ`I ),
γ` is itself random, such that most of the γ` ' 0

1
γ`
∼ Gamma(a, b).
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Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction.
Proceedings of KDD cup and workshop.

Mean-field approximation, F given by :

ρ(dU , dV , dγ) =
m⊗
i=1

ρUi
(dUi ,·)

p⊗
j=1

ρVj
(dVj ,·)

K⊗
k=1

ργk (γk).

It can be shown that
1 ρUi

is N (mT
i ,·,Vi),

2 ρVj
is N (nT

j ,·,Wj),
3 ργk is inverse-Γ(a + (m1 + m2)/2, βk),

for some m × K matrix m whose rows are denoted by mi ,·,
some p × K matrix n and some vector β = (β1, . . . , βK ).
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The VB algorithm

The parameters are updated iteratively through the formulae
1 moments of U :

mT
i,· :=

2α

n
Vi

∑
k:ik=i

Yik ,jk
nTjk ,·

V−1
i :=

2α

n

∑
k:ik=i

[
Wjk

+ njk ,·n
T
jk ,·

]
+

(
a +

m1 + m2

2

)
diag(β)−1

2 moments of V :

nTj,· :=
2α

n
Wj

∑
k:jk=j

Yik ,jk
mT

ik ,·

W−1
j :=

2α

n

∑
k:jk=j

[
Vik

+ mik ,·m
T
ik ,·

]
+

(
a +

m1 + m2

2

)
diag(β)−1

3 moments of γ :

βk :=
1

2

m1∑
i=1

(
m2

i,k + (Vi )k,k

)
+

m2∑
j=1

(
n2j,k + (Vj )k,k

) .
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Example 2 : deep learning

Source : Wikipedia.

Neural network, recursive
definition :

f0,θ(x) = x ,

f
(i)
`+1,θ(x) = ϕ

(
s∑̀
j=1

θ
(`)
i ,j f

(j)
`,θ (x)

)
,

fθ(x) = ψ

(
sL∑
j=1

θ
(L)
i ,j f

(j)
`,θ (x)

)
.

Prior π : independent

θ
(`)
i ,j ∼ N (0, σ2` ).
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Example 2 : deep learning

The posterior is extremely complicated.

Using a mean-field variational approximation where all the θ(`)
i ,j

are independent N (m
(`)
i ,j , (σ

(`)
i ,j )2) a posteriori, the authors of :

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota & M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurIPS.

proposed a refined stochastic gradient algorithm and reached
state-of-the-art performances on large datasets such as
CIFAR-10 and ImageNet.
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Picture : Roman Bachmann.
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