Lectures on Variational Inference 1) Approximate Bayesian Inference in Machine Learning

Pierre Alquier

Heilbronn Institute - University of Bristol - Nov. 27, 2019

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1

Bayesian learning Computational issues Roadmap

Statistical learning problem

• We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} .

Bayesian learning Computational issues Roadmap

Statistical learning problem

We observe X₁,..., X_n i.i.d from P⁰ unknown in X.
We have a loss function

 $\ell: \Theta \times \mathcal{X} \to \mathbb{R}_+.$

Bayesian learning Computational issues Roadmap

Statistical learning problem

We observe X₁,..., X_n i.i.d from P⁰ unknown in X.
We have a loss function

$$\ell: \Theta \times \mathcal{X} \to \mathbb{R}_+.$$

$$R(\theta) = \mathbb{E}_{X \sim P^0}[\ell(\theta, X)].$$

Bayesian learning Computational issues Roadmap

Example 1 : supervised classification

• We observe $X_1 = (Z_1, Y_1), \ldots, X_n = (Z_n, Y_n)$ i.i.d from P^0 unknown in $\mathbb{R}^d \times \{0, 1\}$.

Bayesian learning Computational issues Roadmap

Example 1 : supervised classification

- We observe $X_1 = (Z_1, Y_1), \ldots, X_n = (Z_n, Y_n)$ i.i.d from P^0 unknown in $\mathbb{R}^d \times \{0, 1\}$.
- ② Consider a set of predictors $(f_{\theta}, \theta \in \Theta)$ with $f_{\theta} : \mathbb{R}^{d} \to \{0, 1\}$ and

$$\ell(heta,(z,y)) = \mathbf{1}_{y
eq f_{ heta}(z)} = \left\{ egin{array}{c} 0 \ ext{if} \ y = f_{ heta}(z), \ 1 \ ext{if} \ y
eq f_{ heta}(z). \end{array}
ight.$$

Bayesian learning Computational issues Roadmap

Example 1 : supervised classification

- We observe $X_1 = (Z_1, Y_1), \ldots, X_n = (Z_n, Y_n)$ i.i.d from P^0 unknown in $\mathbb{R}^d \times \{0, 1\}$.
- ② Consider a set of predictors ($f_{\theta}, \theta \in \Theta$) with *f*_θ : ℝ^d → {0, 1} and

$$\ell(heta,(z,y)) = \mathbf{1}_{y
eq f_{ heta}(z)} = \left\{ egin{array}{c} 0 \ ext{if} \ y = f_{ heta}(z), \ 1 \ ext{if} \ y
eq f_{ heta}(z). \end{array}
ight.$$

3 Objective : learn $\theta_0 \in \Theta$ which minimizes the classification error

$$R(\theta) = \mathbb{E}_{X \sim P^0}[\ell(\theta, X)] = \mathbb{P}_{(Z, Y) \sim P^0}[Y \neq f_{\theta}(Z)]$$

Bayesian learning Computational issues Roadmap

Example 2 : parametric estimation

• We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} , with p.d.f p^0 .

Bayesian learning Computational issues Roadmap

Example 2 : parametric estimation

- We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} , with p.d.f p^0 .
- Consider a parametric family of probability distributions : (P_θ, θ ∈ Θ) with p.d.f p_θ and

$$\ell(x, heta) = -\log p_ heta(x) = \log \left(rac{1}{p_ heta(x)}
ight).$$

Bayesian learning Computational issues Roadmap

Example 2 : parametric estimation

- We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} , with p.d.f p^0 .
- Consider a parametric family of probability distributions : (P_θ, θ ∈ Θ) with p.d.f p_θ and

$$\ell(x, heta) = -\log p_ heta(x) = \log \left(rac{1}{p_ heta(x)}
ight).$$

 $\textcircled{O} \text{ Objective : learn } \theta_0 \in \Theta \text{ which minimizes}$

$$R(heta) = \mathbb{E}_{X \sim P^0} \left[\log \left(rac{1}{p_{ heta}(X)}
ight)
ight]$$

Bayesian learning Computational issues Roadmap

Example 2 : parametric estimation

- We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} , with p.d.f p^0 .
- Consider a parametric family of probability distributions : (P_θ, θ ∈ Θ) with p.d.f p_θ and

$$\ell(x, heta) = -\log p_ heta(x) = \log \left(rac{1}{p_ heta(x)}
ight).$$

③ Objective : learn $\theta_0 \in \Theta$ which minimizes

$$R(heta) = \mathbb{E}_{X \sim P^0} \left[\log \left(rac{p^0(X)}{p_ heta(X)}
ight)
ight] - \mathbb{E}_{X \sim P^0} \left[\log \left(p^0(X)
ight)
ight]$$

Bayesian learning Computational issues Roadmap

Example 2 : parametric estimation

- We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} , with p.d.f p^0 .
- ② Consider a parametric family of probability distributions : $(P_{\theta}, \theta \in \Theta)$ with p.d.f p_{θ} and

$$\ell(x, heta) = -\log p_ heta(x) = \log\left(rac{1}{p_ heta(x)}
ight).$$

$$R(\theta) = \mathcal{K}(P_0, P_{\theta}) - \text{ constant.}$$

Bayesian learning Computational issues Roadmap

Example 2 : MLE and Bayesian inference

 $R(heta) = -\mathbb{E}_{X \sim P^0}\left[\log\left(p_{ heta}(X)
ight)
ight].$

Bayesian learning Computational issues Roadmap

Example 2 : MLE and Bayesian inference

$$R(heta) = -\mathbb{E}_{X \sim P^0} \left[\log \left(p_{ heta}(X)
ight)
ight].$$

Estimator of
$$R(\theta)$$
 : $R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log (p_\theta(X_i)) = -\frac{\log(L_n(\theta))}{n}$

Bayesian learning Computational issues Roadmap

Example 2 : MLE and Bayesian inference

$$R(heta) = -\mathbb{E}_{X \sim P^0} \left[\log \left(p_{ heta}(X)
ight)
ight].$$

Estimator of
$$R(\theta)$$
 : $R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log \left(p_{\theta}(X_i) \right) = -\frac{\log(L_n(\theta))}{n}$

MLE Bayesian inference

Bayesian learning Computational issues Roadmap

Example 2 : MLE and Bayesian inference

$$R(heta) = -\mathbb{E}_{X \sim P^0} \left[\log \left(p_{ heta}(X)
ight)
ight].$$

Estimator of
$$R(\theta)$$
 : $R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log (p_\theta(X_i)) = -\frac{\log(L_n(\theta))}{n}$

MLE Bayesian inference

 $\hat{\theta} = \arg\min_{\theta \in \Theta} R_n(\theta)$

Bayesian learning Computational issues Roadmap

Example 2 : MLE and Bayesian inference

$$R(heta) = -\mathbb{E}_{X \sim P^0} \left[\log \left(p_{ heta}(X)
ight)
ight].$$

Estimator of
$$R(\theta)$$
 : $R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log \left(p_{\theta}(X_i) \right) = -\frac{\log(L_n(\theta))}{n}$

Bayesian learning Computational issues Roadmap

Example 2 : MLE and Bayesian inference

$$R(heta) = -\mathbb{E}_{X \sim P^0} \left[\log \left(p_{ heta}(X)
ight)
ight].$$

Estimator of
$$R(\theta)$$
 : $R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log \left(p_{\theta}(X_i) \right) = -\frac{\log(L_n(\theta))}{n}$

The posterior

$$\pi(\theta|X_1,\ldots,X_n)\propto \exp[-nR_n(\theta)]\pi(\theta).$$

Bayesian learning Computational issues Roadmap

General solution : Gibbs posterior

For the general machine learning problem :

•
$$X_1, \ldots, X_n$$
 i.i.d from P^0

Bayesian learning Computational issues Roadmap

General solution : Gibbs posterior

For the general machine learning problem :

•
$$X_1, \ldots, X_n$$
 i.i.d from P^0 ,
• $R(\theta) = \mathbb{E}_{X \sim P^0}[\ell(\theta, X)].$

Define

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, X_i).$$

Bayesian learning Computational issues Roadmap

General solution : Gibbs posterior

For the general machine learning problem :

1
$$X_1, \ldots, X_n$$
 i.i.d from P^0 ,
2 $R(\theta) = \mathbb{E}_{X \sim P^0}[\ell(\theta, X)].$

Define

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, X_i).$$

Gibbs posterior, EWA, ...

$$\pi_{n,\alpha}(\theta) \propto \exp[-\alpha n R_n(\theta)]\pi(\theta).$$

Bayesian learning Computational issues Roadmap

Back to Example 2 : tempered posteriors

Note : in the case of parametric estimation,

$$\pi_{n,\alpha}(\theta) \propto \exp[-\alpha n R_n(\theta)] \pi(\theta) = \exp\left[\alpha \sum_{i=1}^n \log p_{\theta}(X_i)\right] \pi(\theta).$$

Bayesian learning Computational issues Roadmap

Back to Example 2 : tempered posteriors

Note : in the case of parametric estimation,

$$\pi_{n,\alpha}(\theta) \propto \exp[-\alpha n R_n(\theta)] \pi(\theta) = \exp\left[\alpha \sum_{i=1}^n \log p_{\theta}(X_i)\right] \pi(\theta).$$

The tempered posterior

 $\pi_{n,\alpha}(\theta) \propto [L_n(\theta)]^{\alpha} \pi(\mathrm{d}\theta).$

Bayesian learning Computational issues Roadmap

Back to Example 2 : tempered posteriors

Note : in the case of parametric estimation,

$$\pi_{n,\alpha}(\theta) \propto \exp[-\alpha n R_n(\theta)] \pi(\theta) = \exp\left[\alpha \sum_{i=1}^n \log p_{\theta}(X_i)\right] \pi(\theta).$$

The tempered posterior

$$\pi_{n,\alpha}(\theta) \propto [L_n(\theta)]^{\alpha} \pi(\mathrm{d}\theta).$$

Tempered posteriors are actually very useful for statistical inference.

Bayesian learning Computational issues Roadmap

Back to Example 2 : tempered posteriors

- easier to sample from.
 - R.M. Neal. (1996). Sampling from multimodal distributions using tempered transitions. *Statistics and Computing.*
 - G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

Bayesian learning Computational issues Roadmap

Back to Example 2 : tempered posteriors

• easier to sample from.

- R.M. Neal. (1996). Sampling from multimodal distributions using tempered transitions. *Statistics and Computing.*
- G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.
- more robust to model misspecification.

P. Grünwald and T. Van Ommen (2017). Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. *Bayesian Analysis*.

Bayesian learning Computational issues Roadmap

Back to Example 2 : tempered posteriors

• easier to sample from.

- R.M. Neal. (1996). Sampling from multimodal distributions using tempered transitions. *Statistics and Computing.*
- G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

• more robust to model misspecification.

P. Grünwald and T. Van Ommen (2017). Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. *Bayesian Analysis*.

theoretical analysis simpler.

Bayesian learning Computational issues Roadmap

Notation – summary

• We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} .

Bayesian learning Computational issues Roadmap

Notation – summary

We observe X₁,..., X_n i.i.d from P⁰ unknown in X.
 Loss function l.

Bayesian learning Computational issues Roadmap

Notation – summary

- We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} .
- **2** Loss function ℓ .
- Minimize $R(\theta) = \mathbb{E}_{X \sim P^0}[\ell(\theta, X)].$

Bayesian learning Computational issues Roadmap

Notation – summary

- We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} .
- **2** Loss function ℓ .
- Minimize $R(\theta) = \mathbb{E}_{X \sim P^0}[\ell(\theta, X)].$
- Empirical risk

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, X_i).$$

Bayesian learning Computational issues Roadmap

Notation – summary

- We observe X_1, \ldots, X_n i.i.d from P^0 unknown in \mathcal{X} .
- **2** Loss function ℓ .
- Minimize $R(\theta) = \mathbb{E}_{X \sim P^0}[\ell(\theta, X)].$
- Empirical risk

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta, X_i).$$

5 Temperature $\alpha > 0$, Gibbs or tempered posterior

$$\pi_{n,\alpha}(\theta) \propto \exp[-\alpha n R_n(\theta)]\pi(\theta).$$

Bayesian learning Computational issues Roadmap

Computational problem

Apart from a few classical examples, $\pi_{n,\alpha}$ is intractable.

Bayesian learning Computational issues Roadmap

Computational problem

Apart from a few classical examples, $\pi_{n,\alpha}$ is intractable. Popular methods to compute / sample from the (tempered) posterior :

 Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo, ABC etc.

Bayesian learning Computational issues Roadmap

Computational problem

Apart from a few classical examples, $\pi_{n,\alpha}$ is intractable. Popular methods to compute / sample from the (tempered) posterior :

- Monte-Carlo methods : MCMC (Gibbs Sampler, Metropolis-Hastings), SMC, Langevin Monte-Carlo, ABC etc.
- optimization methods : variational approximations or variational inference (VI) and expectation-propagation (EP).

Roadmap

Bayesian learning Computational issues Roadmap

I) Lecture 1 : approximate Bayesian inference in ML.

- Introduction.
- 2 Definition of VI.
- S Examples of VI.

Roadmap

Bayesian learning Computational issues Roadmap

I) Lecture 1 : approximate Bayesian inference in ML.

- Introduction.
- 2 Definition of VI.
- S Examples of VI.
- II) Lecture 2 : statistical analysis of VI.

With theorems and all !

Roadmap

Bayesian learning Computational issues Roadmap

I) Lecture 1 : approximate Bayesian inference in ML.

- Introduction.
- 2 Definition of VI.
- S Examples of VI.
- II) Lecture 2 : statistical analysis of VI.

With theorems and all !

III) Seminar (Thursday next week) : online VI.For data streams or large-scale learning.

Bayesian learning Computational issues Roadmap

Lecture 1

Introduction : computational issues in Bayesian learning

- Bayesian learning
- Computational issues
- Roadmap
- 2 Variational Approximations : Definition
 - Definition of VI
 - The ELBO
 - Strategies for ELBO maximization
- 3 Examples of Variational Approximations in Machine Learning
 - Recommender systems and matrix completion
 - Deep learning

Definition of VI The ELBO Strategies for ELBO maximization

Variational Approximations : Definition

- Introduction : computational issues in Bayesian learning
 - Bayesian learning
 - Computational issues
 - Roadmap
- 2 Variational Approximations : Definition
 - Definition of VI
 - The ELBO
 - Strategies for ELBO maximization
- Examples of Variational Approximations in Machine Learning
 - Recommender systems and matrix completion
 - Deep learning

Definition of VI The ELBO Strategies for ELBO maximization

Reminder on Kullback divergence

Definition – Kullback divergence

Let P and Q be two probability distributions with p.d.f p and q respectively. Then :

$$\mathcal{K}(P,Q) = \mathbb{E}_{U \sim P}\left[\log\left(\frac{\mathrm{d}P}{\mathrm{d}Q}(U)\right)\right] = \int \log\left(\frac{p(u)}{q(u)}\right) p(u)\mathrm{d}u.$$

Definition of VI The ELBO Strategies for ELBO maximization

Reminder on Kullback divergence

Definition – Kullback divergence

$$\mathcal{K}(P,Q) = \mathbb{E}_{U \sim P}\left[\log\left(\frac{\mathrm{d}P}{\mathrm{d}Q}(U)\right)\right] = \int \log\left(\frac{p(u)}{q(u)}\right) p(u)\mathrm{d}u.$$

Theorem

$$\mathcal{K}(P,Q) \geq 0$$
 and $\mathcal{K}(P,Q) = 0 \Leftrightarrow P = Q$.

Definition of VI The ELBO Strategies for ELBO maximization

Reminder on Kullback divergence

Definition – Kullback divergence

$$\mathcal{K}(P,Q) = \mathbb{E}_{U \sim P}\left[\log\left(\frac{\mathrm{d}P}{\mathrm{d}Q}(U)\right)\right] = \int \log\left(\frac{p(u)}{q(u)}\right) p(u)\mathrm{d}u.$$

Theorem

$$\mathcal{K}(P,Q) \geq 0$$
 and $\mathcal{K}(P,Q) = 0 \Leftrightarrow P = Q.$

Proof :

$$egin{aligned} \mathcal{K}(P,Q) &= -\int \log\left(rac{q(u)}{p(u)}
ight) p(u)\mathrm{d}u \ &\geq -\log\left(\int \left[rac{q(u)}{p(u)}
ight] p(u)\mathrm{d}u
ight) \geq \log(1) = 0. \end{aligned}$$

Definition of VI The ELBO Strategies for ELBO maximization

Definition of VI

• Chose a tractable family \mathcal{F} of probability distributions on the parameter θ ,

Definition of VI The ELBO Strategies for ELBO maximization

Definition of VI

- Chose a tractable family \mathcal{F} of probability distributions on the parameter θ ,
- 2 Define

$$ilde{\pi}_{\textit{n},lpha} = rgmin_{
ho \in \mathcal{F}} \mathcal{K}(
ho, \pi_{\textit{n},lpha}).$$

Definition of VI The ELBO Strategies for ELBO maximization

Definition of VI

• Chose a tractable family \mathcal{F} of probability distributions on the parameter θ ,

2 Define

$$ilde{\pi}_{{\it n},lpha} = rgmin_{
ho \in {\cal F}} {\cal K}(
ho, \pi_{{\it n},lpha}).$$

Examples of \mathcal{F} :

parametric approximation

$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^{d}, \Sigma \in \mathcal{S}_{d}^{+}
ight\}.$$

Definition of VI The ELBO Strategies for ELBO maximization

Definition of VI

• Chose a tractable family \mathcal{F} of probability distributions on the parameter θ ,

2 Define

$$ilde{\pi}_{{\it n},lpha} = rgmin_{
ho \in {\cal F}} {\cal K}(
ho, \pi_{{\it n},lpha}).$$

Examples of \mathcal{F} :

parametric approximation

$$\mathcal{F} = \left\{ \mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathcal{S}_d^+
ight\}.$$

• mean-field approximation, $heta=(heta_1, heta_2)\in\Theta=\Theta_1 imes\Theta_2$,

$$\mathcal{F}: \left\{ \rho: \rho(\mathrm{d}\theta) = \rho_1(\mathrm{d}\theta_1) \otimes \rho_2(\mathrm{d}\theta_2) \right\}.$$

Definition of VI The ELBO Strategies for ELBO maximization

The ELBO

(

$$\mathcal{D} \leq \mathcal{K}(
ho, \pi_{n, lpha})$$

= $\mathbb{E}_{\theta \sim
ho} \left[\log \left(\frac{\mathrm{d}
ho}{\mathrm{d} \pi_{n, lpha}}(heta) \right)
ight]$

Definition of VI The ELBO Strategies for ELBO maximization

The ELBO

$$\begin{split} & 0 \leq \mathcal{K}(\rho, \pi_{n,\alpha}) \\ &= \mathbb{E}_{\theta \sim \rho} \left[\log \left(\frac{\mathrm{d}\rho}{\mathrm{d}\pi_{n,\alpha}}(\theta) \right) \right] \\ &= \mathbb{E}_{\theta \sim \rho} \left[\log \left(\frac{\mathrm{d}\rho}{\mathrm{d}\pi}(\theta) \frac{\mathbb{E}_{\theta \sim \pi} \left[\exp(-n\alpha R_n(\theta)) \right]}{\exp(-n\alpha R_n(\theta))} \right) \right] \end{split}$$

Definition of VI The ELBO Strategies for ELBO maximization

The ELBO

(

$$D \leq \mathcal{K}(\rho, \pi_{n,\alpha})$$

= $\mathbb{E}_{\theta \sim \rho} \left[\log \left(\frac{\mathrm{d}\rho}{\mathrm{d}\pi_{n,\alpha}}(\theta) \right) \right]$
= $\mathbb{E}_{\theta \sim \rho} \left[\log \left(\frac{\mathrm{d}\rho}{\mathrm{d}\pi}(\theta) \frac{\mathbb{E}_{\theta \sim \pi} \left[\exp(-n\alpha R_n(\theta)) \right]}{\exp(-n\alpha R_n(\theta))} \right) \right]$
= $n\alpha \mathbb{E}_{\theta \sim \rho} \left[R_n(\theta) \right] + \mathcal{K}(\rho, \pi) + \log \mathbb{E}_{\theta \sim \pi} \left[\exp(-n\alpha R_n(\theta)) \right].$

Definition of VI The ELBO Strategies for ELBO maximization

The ELBO

$$0 \leq \mathcal{K}(\rho, \pi_{n,\alpha})$$

= $\mathbb{E}_{\theta \sim \rho} \left[\log \left(\frac{\mathrm{d}\rho}{\mathrm{d}\pi_{n,\alpha}}(\theta) \right) \right]$
= $\mathbb{E}_{\theta \sim \rho} \left[\log \left(\frac{\mathrm{d}\rho}{\mathrm{d}\pi}(\theta) \frac{\mathbb{E}_{\theta \sim \pi} \left[\exp(-n\alpha R_n(\theta)) \right]}{\exp(-n\alpha R_n(\theta))} \right) \right]$
= $n\alpha \mathbb{E}_{\theta \sim \rho} \left[R_n(\theta) \right] + \mathcal{K}(\rho, \pi) + \log \mathbb{E}_{\theta \sim \pi} \left[\exp(-n\alpha R_n(\theta)) \right]$

That is,

Evidence = log
$$\mathbb{E}_{\theta \sim \pi} [\exp(-n\alpha R_n(\theta))]$$

 $\geq -n\alpha \mathbb{E}_{\theta \sim \rho} [R_n(\theta)] - \mathcal{K}(\rho, \pi)$
= ELBO(ρ) (Evidence Lower Bound).

Definition of VI The ELBO Strategies for ELBO maximization

Alternative definition of VI with ELBO

We end up with two definitions of VI.

Definition of VI The ELBO Strategies for ELBO maximization

Alternative definition of VI with ELBO

We end up with two definitions of VI.

best approximation of the posterior

$$ilde{\pi}_{\mathbf{n},lpha} = rgmin_{
ho\in\mathcal{F}}\mathcal{K}(
ho,\pi_{\mathbf{n},lpha}),$$

Definition of VI The ELBO Strategies for ELBO maximization

Alternative definition of VI with ELBO

We end up with two definitions of VI.

best approximation of the posterior

$$ilde{\pi}_{\mathbf{n},lpha} = rgmin_{
ho\in\mathcal{F}}\mathcal{K}(
ho,\pi_{\mathbf{n},lpha}),$$

2 maximization of the evidence lower bound

$$\begin{split} \tilde{\pi}_{n,\alpha} &= \operatorname*{arg\,max}_{\rho \in \mathcal{F}} \operatorname{ELBO}(\rho) \\ &= \operatorname*{arg\,max}_{\rho \in \mathcal{F}} \left\{ -n \alpha \mathbb{E}_{\theta \sim \rho} \left[R_n(\theta) \right] - \mathcal{K}(\rho, \pi) \right\} \end{split}$$

Definition of VI The ELBO Strategies for ELBO maximization

Donsker and Varadhan's variational inequality

Remark : from the above inequality

$$0 \leq \mathcal{K}(\rho, \pi_{n, \alpha}) = -\text{ELBO}(\rho) + \text{evidence},$$

Definition of VI The ELBO Strategies for ELBO maximization

Donsker and Varadhan's variational inequality

Remark : from the above inequality

$$0 \leq \mathcal{K}(\rho, \pi_{n, \alpha}) = -\text{ELBO}(\rho) + \text{evidence},$$

it is clear that without the constraint $\rho \in \mathcal{F}$, the ELBO is maximized by $\rho = \pi_{n,\alpha}$.

Definition of VI The ELBO Strategies for ELBO maximization

Donsker and Varadhan's variational inequality

Remark : from the above inequality

$$0 \leq \mathcal{K}(\rho, \pi_{n, \alpha}) = -\text{ELBO}(\rho) + \text{evidence},$$

it is clear that without the constraint $\rho \in \mathcal{F}$, the ELBO is maximized by $\rho = \pi_{n,\alpha}$.

Theorem : Donsker and Varadhan's variational inequality

$$\mathbb{E}_{\theta \sim \pi_{n,\alpha}}[R_n(\theta)] + \frac{\mathcal{K}(\pi_{n,\alpha},\pi)}{n\alpha} = \inf_{\rho} \left\{ \mathbb{E}_{\theta \sim \rho}[R_n(\theta)] + \frac{\mathcal{K}(\rho,\pi)}{n\alpha} \right\}.$$

Definition of VI The ELBO Strategies for ELBO maximization

How to maximize the ELBO?

Definition of VI The ELBO Strategies for ELBO maximization

How to maximize the ELBO?

Parametric variational inference : $\mathcal{F} = \{q_{\lambda}, \lambda \in \Lambda\}.$

Definition of VI The ELBO Strategies for ELBO maximization

How to maximize the ELBO?

Parametric variational inference : $\mathcal{F} = \{q_{\lambda}, \lambda \in \Lambda\}.$

Gradient algorithm

$$\lambda_{t+1} = \lambda_t + \eta \nabla \text{ELBO}(q_{\lambda_t}).$$

Definition of VI The ELBO Strategies for ELBO maximization

How to maximize the ELBO?

Parametric variational inference : $\mathcal{F} = \{q_{\lambda}, \lambda \in \Lambda\}.$

Gradient algorithm

$$\lambda_{t+1} = \lambda_t + \eta \nabla \text{ELBO}(\boldsymbol{q}_{\lambda_t}).$$

Usually, the gradient is not available in closed-form but often it is possible to build an unbiased estimate of it : $\hat{\nabla} \text{ELBO}(q_{\lambda_t})$.

Definition of VI The ELBO Strategies for ELBO maximization

How to maximize the ELBO?

Parametric variational inference : $\mathcal{F} = \{q_{\lambda}, \lambda \in \Lambda\}.$

Gradient algorithm

$$\lambda_{t+1} = \lambda_t + \eta \nabla \text{ELBO}(q_{\lambda_t}).$$

Usually, the gradient is not available in closed-form but often it is possible to build an unbiased estimate of it : $\hat{\nabla} \text{ELBO}(q_{\lambda_t})$.

Stochastic gradient algorithm

$$\lambda_{t+1} = \lambda_t + \eta \hat{\nabla} \text{ELBO}(\boldsymbol{q}_{\lambda_t}).$$

Definition of VI The ELBO Strategies for ELBO maximization

Stochastic gradient of the ELBO

$$\mathsf{Ex}: q_{\lambda} = \mathcal{N}(\mu, \sigma^2 I), \ \lambda = (\mu, \sigma) \in \mathbb{R}^d \times \mathbb{R}^*_+, \ \pi = \mathcal{N}(0, I).$$

Definition of VI The ELBO Strategies for ELBO maximization

Stochastic gradient of the ELBO

$$\mathsf{Ex}: q_\lambda = \mathcal{N}(\mu, \sigma^2 I), \ \lambda = (\mu, \sigma) \in \mathbb{R}^d imes \mathbb{R}^*_+, \ \pi = \mathcal{N}(0, I).$$

$$\begin{split} & \text{ELBO}(q_{\lambda}) \\ &= -\mathbb{E}_{\theta \sim q_{\lambda}} \left[n \alpha R_{n}(\theta) \right] - \mathcal{K}(q_{\lambda}, \pi) \\ &= -\mathbb{E}_{\theta \sim \mathcal{N}(0, I)} \left[n \alpha R_{n}(\mu + \sigma \theta) \right] - \frac{\|\mu\|^{2} + k(\sigma^{2} - \log(\sigma^{2}) - 1)}{2} \\ & \text{and so, under for a smooth } R_{n}, \end{split}$$

$$\nabla \text{ELBO}(\boldsymbol{q}_{\lambda}) = -\mathbb{E}_{\boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{l})} \left[\boldsymbol{n} \alpha \nabla_{\lambda} \boldsymbol{R}_{\boldsymbol{n}}(\boldsymbol{\mu} + \boldsymbol{\sigma} \boldsymbol{\theta}) \right] - \left(\begin{array}{c} \boldsymbol{\mu} \\ \frac{k}{2} \left(\boldsymbol{\sigma} - \frac{2}{\boldsymbol{\sigma}} \right) \end{array} \right),$$

Definition of VI The ELBO Strategies for ELBO maximization

Stochastic gradient of the ELBO

$$\mathsf{Ex}: q_\lambda = \mathcal{N}(\mu, \sigma^2 I)$$
, $\lambda = (\mu, \sigma) \in \mathbb{R}^d imes \mathbb{R}^*_+$, $\pi = \mathcal{N}(0, I)$.

$$\begin{split} & \text{ELBO}(q_{\lambda}) \\ &= -\mathbb{E}_{\theta \sim q_{\lambda}} \left[n \alpha R_{n}(\theta) \right] - \mathcal{K}(q_{\lambda}, \pi) \\ &= -\mathbb{E}_{\theta \sim \mathcal{N}(0, I)} \left[n \alpha R_{n}(\mu + \sigma \theta) \right] - \frac{\|\mu\|^{2} + k(\sigma^{2} - \log(\sigma^{2}) - 1)}{2} \end{split}$$

and so, under for a smooth R_n ,

$$\nabla \text{ELBO}(\boldsymbol{q}_{\lambda}) = -\mathbb{E}_{\theta \sim \mathcal{N}(0,l)} \left[\boldsymbol{n} \alpha \nabla_{\lambda} \boldsymbol{R}_{\boldsymbol{n}}(\mu + \sigma \theta) \right] - \left(\begin{array}{c} \mu \\ \frac{k}{2} \left(\sigma - \frac{2}{\sigma} \right) \end{array} \right),$$

$$\hat{\nabla} \text{ELBO}(q_{\lambda}) = - \left(\begin{array}{c} \frac{n\alpha}{m} \sum_{j=1}^{m} \nabla R_n(\mu + \sigma \theta_j) + \mu \\ \frac{n\alpha}{m} \sum_{j=1}^{m} \theta_j \nabla R_n(\mu + \sigma \theta_j) + \frac{k}{2} \left(\sigma - \frac{2}{\sigma} \right) \end{array} \right).$$

Definition of VI The ELBO Strategies for ELBO maximization

Mean-field approximation

Mean-field variational approximation :

$$\mathcal{F}: \{ \rho: \rho(\mathrm{d} \theta) = \rho_1(\mathrm{d} \theta_1) \otimes \rho_2(\mathrm{d} \theta_2) \}.$$

Alternate optimization

$$\rho_1^{t+1} = \underset{\rho_1}{\arg \max} \operatorname{ELBO}(\rho_1 \times \rho_2^t)$$
$$\rho_2^{t+1} = \underset{\rho_2}{\arg \max} \operatorname{ELBO}(\rho_1^{t+1} \times \rho_2)$$

Definition of VI The ELBO Strategies for ELBO maximization

Mean-field approximation : explicit formula

$$ho_1^{t+1} = rg\max_{
ho_1} ext{ELBO}(
ho_1 \otimes
ho_2^t)$$

Definition of VI The ELBO Strategies for ELBO maximization

Mean-field approximation : explicit formula

$$\rho_1^{t+1} = \operatorname*{arg\,max}_{
ho_1} \operatorname{ELBO}(
ho_1 \otimes
ho_2^t)$$

Assume $\pi = \pi_1 \times \pi_2$.

$$\max_{\rho_1} \left\{ \alpha n \mathbb{E}_{\theta_1 \sim \rho_1} \mathbb{E}_{\theta_2 \sim \rho_2^t} [R_n(\theta_1, \theta_2)] + \mathcal{K}(\rho_1, \pi_1) + \mathcal{K}(\rho_2^t, \pi_2) \right\}$$

Definition of VI The ELBO Strategies for ELBO maximization

Mean-field approximation : explicit formula

$$ho_1^{t+1} = rgmax_{
ho_1} ext{ELBO}(
ho_1 \otimes
ho_2^t)$$

Assume $\pi = \pi_1 \times \pi_2$.

$$\max_{\rho_1} \left\{ \alpha n \mathbb{E}_{\theta_1 \sim \rho_1} \mathbb{E}_{\theta_2 \sim \rho_2^t} [R_n(\theta_1, \theta_2)] + \mathcal{K}(\rho_1, \pi_1) + \mathcal{K}(\rho_2^t, \pi_2) \right\}$$

Use Donsker and Varadhan's variational formula.

$$\rho_1^{t+1}(\theta_1) \propto \exp\left[-n\alpha \mathbb{E}_{\theta_2 \sim \rho_2^t}[R_n(\theta_1, \theta_2)|\theta_1]\right] \pi_1(\theta_1).$$

Definition of VI The ELBO Strategies for ELBO maximization

Further reading

Recent survey on variational inference :

D. M. Blei, A. Kucukelbir & J. D. McAuliffe (2017). Variational inference : A review for statisticians. Journal of the American Statistical Association.

Recommender systems and matrix completion Deep learning

Examples

Introduction : computational issues in Bayesian learning

- Bayesian learning
- Computational issues
- Roadmap
- 2 Variational Approximations : Definition
 - Definition of VI
 - The ELBO
 - Strategies for ELBO maximization
- 3 Examples of Variational Approximations in Machine Learning
 - Recommender systems and matrix completion
 - Deep learning

Recommender systems and matrix completion Deep learning

Example 1 : recommendation via matrix completion

			ACIN VOLGIN TOTORO	
Claire	4	?	3	
Nial	?	4	?	
Brendon	?	5	4	
Andrew	?	4	?	
Adrian	1	?	?	
Damien	?	1	?	•••
:	:			·

Recommender systems and matrix completion Deep learning

The Netflix challenge

		eschult, et it
T	NETFLIX	2009 DATE 09 21 09
	PAY TO THE BellKor's Pragmatic Chaos GREAT OF BellKor's Pragmatic Chaos AMOUNT ONE MILLION	s 1,000,000 ≌ ∞0/100
M	EOB The Netflix Prize Reed Hastings	

Recommender systems and matrix completion Deep learning

Matrix completion : notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$.

Recommender systems and matrix completion Deep learning

Matrix completion : notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$.

Recommender systems and matrix completion Deep learning

Matrix completion : notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$. Assume that the ε_k are i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known.

Recommender systems and matrix completion Deep learning

Matrix completion : notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$. Assume that the ε_k are i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known. We have

$$\mathcal{K}(P_M, P_N) = rac{1}{mp} \sum_{i=1}^m \sum_{j=1}^p rac{(M_{i,j} - N_{i,j})^2}{2\sigma^2} = rac{\|M - N\|_F^2}{2\sigma^2 mp}.$$

Recommender systems and matrix completion Deep learning

Matrix completion : notations

The parameter θ is a matrix $M^0 \in \mathbb{R}^{m \times p}$, with $m, p \ge 1$. Under P_M , the observations are random entries of this matrix with possible noise :

$$Y_i = M^0_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$. Assume that the ε_k are i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known. We have

$$\mathcal{K}(P_M, P_N) = \frac{1}{mp} \sum_{i=1}^m \sum_{j=1}^p \frac{(M_{i,j} - N_{i,j})^2}{2\sigma^2} = \frac{\|M - N\|_F^2}{2\sigma^2 mp}.$$

Usual assumption : M^0 is low-rank.

Recommender systems and matrix completion

Prior specification - main idea

Define :

 $\underbrace{M}_{p\times m} = \underbrace{U}_{p\times k} \underbrace{V^{T}}_{k\times m}.$

Pierre Alguier, RIKEN AIP Lectures on Variational Inference - 1

Recommender systems and matrix completion Deep learning

Prior specification - main idea

Define :

 $\underbrace{M}_{p\times m} = \underbrace{U}_{p\times k} \underbrace{V}_{k\times m}^{T}.$

Let $U_{\cdot,\ell} \sim \mathcal{N}(0,\gamma I)$ denote the ℓ -th column of M, we have :

$$M = \sum_{\ell=1}^{k} U_{\cdot,\ell}(V_{\cdot,\ell})^{T} \quad \Rightarrow \quad \operatorname{rank}(M) \leq k.$$

Recommender systems and matrix completion Deep learning

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. Proceedings of ICML.

Recommender systems and matrix completion Deep learning

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. *Proceedings of ICML*.

$$M = \sum_{\ell=1}^{k} U_{\cdot,\ell} (V_{\cdot,\ell})^{T}$$

with k large - e.g. $k = \min(p, m)$.

Recommender systems and matrix completion Deep learning

Prior specification - adaptation

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. *Proceedings of ICML*.

$$M = \sum_{\ell=1}^k U_{\cdot,\ell} (V_{\cdot,\ell})^{ au}$$

with k large - e.g. $k = \min(p, m)$.

Definition of π :

- $U_{\cdot,\ell}, V_{\cdot,\ell} \sim \mathcal{N}(0,\gamma_\ell I)$,
- γ_ℓ is itself random, such that most of the $\gamma_\ell\simeq 0$

$$rac{1}{\gamma_\ell} \sim \operatorname{Gamma}(a, b).$$

Recommender systems and matrix completion Deep learning

Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. *Proceedings of KDD cup and workshop.*

Mean-field approximation, \mathcal{F} given by :

$$\rho(\mathrm{d} U, \mathrm{d} V, \mathrm{d} \gamma) = \bigotimes_{i=1}^{m} \rho_{U_i}(\mathrm{d} U_{i,\cdot}) \bigotimes_{j=1}^{p} \rho_{V_j}(\mathrm{d} V_{j,\cdot}) \bigotimes_{k=1}^{K} \rho_{\gamma_k}(\gamma_k).$$

Recommender systems and matrix completion Deep learning

Variational approximation

Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction. *Proceedings of KDD cup and workshop.*

Mean-field approximation, \mathcal{F} given by :

$$\rho(\mathrm{d} U, \mathrm{d} V, \mathrm{d} \gamma) = \bigotimes_{i=1}^{m} \rho_{U_i}(\mathrm{d} U_{i,\cdot}) \bigotimes_{j=1}^{p} \rho_{V_j}(\mathrm{d} V_{j,\cdot}) \bigotimes_{k=1}^{K} \rho_{\gamma_k}(\gamma_k).$$

It can be shown that

1 ρ_{U_i} is $\mathcal{N}(\mathbf{m}_{i,\cdot}^T, \mathcal{V}_i)$, 2 ρ_{V_i} is $\mathcal{N}(\mathbf{n}_{i,\cdot}^T, \mathcal{W}_i)$,

• ρ_{γ_k} is inverse- $\Gamma(a + (m_1 + m_2)/2, \beta_k)$,

for some $m \times K$ matrix **m** whose rows are denoted by $\mathbf{m}_{i,\cdot}$, some $p \times K$ matrix **n** and some vector $\beta = (\beta_1, \ldots, \beta_K)$.

Recommender systems and matrix completion Deep learning

The VB algorithm

The parameters are updated iteratively through the formulae

$$\mathbf{m}_{i,\cdot}^{\mathsf{T}} := \frac{2\alpha}{n} \mathcal{V}_i \sum_{k:i_k=i} Y_{i_k,j_k} \mathbf{n}_{j_k,\cdot}^{\mathsf{T}}$$

$$\mathcal{V}_i^{-1} := \frac{2\alpha}{n} \sum_{k: i_k = i} \left[\mathcal{W}_{j_k} + \mathbf{n}_{j_k,\cdot} \mathbf{n}_{j_k,\cdot}^T \right] + \left(\mathbf{a} + \frac{m_1 + m_2}{2} \right) \mathrm{diag}(\beta)^{-1}$$

moments of V :

$$\mathbf{n}_{j,\cdot}^{\mathsf{T}} := \frac{2\alpha}{n} \mathcal{W}_j \sum_{k:j_k=j} Y_{i_k,j_k} \mathbf{m}_{i_k,\cdot}^{\mathsf{T}}$$

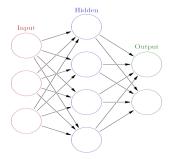
$$\mathcal{W}_j^{-1} := \frac{2\alpha}{n} \sum_{k: j_k = j} \left[\mathcal{V}_{i_k} + \mathbf{m}_{i_k, \cdot} \mathbf{m}_{i_k, \cdot}^T \right] + \left(\mathbf{a} + \frac{m_1 + m_2}{2} \right) \mathrm{diag}(\beta)^{-1}$$

) moments of γ :

$$\beta_k := \frac{1}{2} \left[\sum_{i=1}^{m_1} \left(\mathsf{m}_{i,k}^2 + (\mathcal{V}_i)_{k,k} \right) + \sum_{j=1}^{m_2} \left(\mathsf{n}_{j,k}^2 + (\mathcal{V}_j)_{k,k} \right) \right].$$

Recommender systems and matrix completion Deep learning

Example 2 : deep learning



Source : Wikipedia.

Recommender systems and matrix completion Deep learning

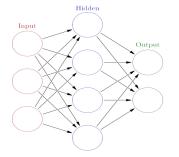
Example 2 : deep learning

Neural network, recursive definition :

$$f_{0,\theta}(x) = x,$$

$$f_{\ell+1, heta}^{(i)}(x) = arphi\left(\sum_{j=1}^{s_\ell} heta_{i,j}^{(\ell)}f_{\ell, heta}^{(j)}(x)
ight),$$

$$f_{\theta}(x) = \psi\left(\sum_{j=1}^{s_L} \theta_{i,j}^{(L)} f_{\ell,\theta}^{(j)}(x)\right).$$



Source : Wikipedia.

Recommender systems and matrix completion Deep learning

Example 2 : deep learning

Neural network, recursive definition :

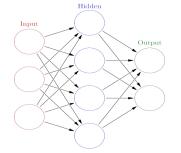
$$f_{0,\theta}(x) = x,$$

$$f_{\ell+1, heta}^{(i)}(x) = arphi\left(\sum_{j=1}^{s_\ell} heta_{i,j}^{(\ell)}f_{\ell, heta}^{(j)}(x)
ight),$$

$$f_{ heta}(x) = \psi\left(\sum_{j=1}^{s_L} heta_{i,j}^{(L)} f_{\ell, heta}^{(j)}(x)
ight).$$

Prior π : independent

$$\theta_{i,j}^{(\ell)} \sim \mathcal{N}(\mathbf{0}, \sigma_{\ell}^2).$$



Source : Wikipedia.

Recommender systems and matrix completion Deep learning

Example 2 : deep learning

The posterior is *extremely* complicated.

Recommender systems and matrix completion Deep learning

Example 2 : deep learning

The posterior is *extremely* complicated.

Using a mean-field variational approximation where all the $\theta_{i,j}^{(\ell)}$ are independent $\mathcal{N}(m_{i,j}^{(\ell)}, (\sigma_{i,j}^{(\ell)})^2)$ a posteriori, the authors of :

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota & M. E. Khan (2019). Practical Deep Learning with Bayesian Principles. *NeurIPS*.

proposed a refined stochastic gradient algorithm and reached state-of-the-art performances on large datasets such as CIFAR-10 and ImageNet.

Recommender systems and matrix completion Deep learning

Example 2 : deep learning

K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota & M. E. Khan (2019). Practical Deep Learning with Bayesian Principles. *NeurIPS*.

Picture : Roman Bachmann.

