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Introduction : computational issues in Bayesian learning Bayesian learning
Computational issues
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Statistical learning problem

@ We observe Xi,..., X, i.i.d from P° unknown in X.
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Statistical learning problem

@ We observe Xi,..., X, i.i.d from P° unknown in X.
© We have a loss function

(:0x X —R,.
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Introduction : computational issues in Bayesian learning Bayesian learning
Computational issues
Roadmap

Statistical learning problem

@ We observe Xi,..., X, i.i.d from P° unknown in X.
© We have a loss function

(:0x X —R,.

© Objective : base on the sample, learn 6, € © which
minimizes the risk

R(6) = Ex._po[£(8, X)].
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Example 1 : supervised classification

Q@ We observe Xy = (Z1, Y1), ..., Xn = (Z,, Y,) i.i.d from
PO unknown in RY x {0, 1}.
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Example 1 : supervised classification

Q@ We observe Xy = (Z1, Y1), ..., Xn = (Z,, Y,) i.i.d from
PO unknown in RY x {0, 1}.

@ Consider a set of predictors (fy, 0 € ©) with
fy: RY — {0,1} and

(0,(2,y)) = Lyzp(z) = { (1) :]f)}i ; 28
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Example 1 : supervised classification

Q@ We observe Xy = (Z1, Y1), ..., Xn = (Z,, Y,) i.i.d from
PO unknown in RY x {0, 1}.

@ Consider a set of predictors (fy, 0 € ©) with
fy: RY — {0,1} and

(0,(2,y)) = Lyzp(z) = { (1) :]f)}i ; 28

© Objective : learn 6y € © which minimizes the
classification error

R(0) = Ex-polt(6. X)] = B(z.y)upalY # f(2).
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Example 2 : parametric estimation

© We observe Xi,..., X, i.i.d from P° unknown in X, with
p.d.f p°.
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Example 2 : parametric estimation

© We observe Xi,..., X, i.i.d from P° unknown in X, with
p.d.f p°.

© Consider a parametric family of probability distributions :
(Py, 0 € ©) with p.d.f py and

((x,0) = — log py(x) = log (ﬁ) |
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Example 2 : parametric estimation

Q@ We observe Xi,..., X, i.i.d from P° unknown in X, with
p.d.f p°.

© Consider a parametric family of probability distributions :
(Ps, 0 € ©) with p.d.f py and

z(x,e):—logpg(x):mg( ! )

Po(x)

© Objective : learn 6y € © which minimizes

)
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Example 2 : parametric estimation

© We observe Xi,..., X, i.i.d from P° unknown in X, with
p.d.f p°.

@ Consider a parametric family of probability distributions :
(Py, 0 € ©) with p.d.f py and

f(x,@):—logpg(x)zlog( ! )

po(x)

© Objective : learn 6y € © which minimizes

R(6) = Ex..po [|og (’; :88)} — Ex-po [log (p°(X))]

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Introduction : computational issues in Bayesian learning Bayesian learning
Computational issues
Roadmap

Example 2 : parametric estimation

© We observe Xi, ..., X, i.i.d from P° unknown in X, with
p.d.f p°.

© Consider a parametric family of probability distributions :
(Py, 0 € ©) with p.d.f py and

((x,0) = — log py(x) = log (peix)) |

© Objective : learn 0y € © which minimizes the Kullback
divergence

R(0) = K(Po, Py) — constant.
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Example 2 : MLE and Bayesian inference

R(0) = —Ex~po [log (po(X))] -
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Example 2 : MLE and Bayesian inference

R(0) = —Ex~po [log (po(X))] -

Estimator of R(0) : R,(0) = —= Z log (ps( X)) = |0g(Ln(9))'
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Example 2 : MLE and Bayesian inference

R(0) = —Ex~po [log (pe(X))] -
Estimator of R(0) : R,(0) = —= Z log (pa(Xi)) = M.

MLE Bayesian inference
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Example 2 : MLE and Bayesian inference

R(0) = —Ex~po [log (pe(X))] -
Estimator of R(0) : R,(0) = —= Z log (pa(Xi)) = M.

MLE Bayesian inference

0 = arg minycg Ra(6)
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Example 2 : MLE and Bayesian inference

R(0) = —Ex~po [log (po(X))] -

log(L,(0
Estimator of R(0) : R,(0) = —= Z log (pa(Xi)) = M.
MLE Bayesian inference
A _ prior 7(6)
# = argmingco Ry() m(0]Xy, ..., Xn) = fLL:(e)w((g))de
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Example 2 : MLE and Bayesian inference

R(0) = —Ex~po [log (po(X))] -

log(L,(0
Estimator of R(0) : R,(0) = —= Z log (pa(Xi)) = M.
MLE Bayesian inference
A _ prior 7(6)
# = argmingco Ry() m(0]Xy, ..., Xn) = fLL:(e)w((g))de

The posterior

(0| X1, ..., X,) o< exp[—nR,(0)]7(6).
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General solution : Gibbs posterior

For the general machine learning problem :
Q@ Xi,...,X,iid from P°
Q R(0) = Ex<po[t(0, X)].
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General solution : Gibbs posterior

For the general machine learning problem :
Q@ Xi,...,X,iid from P°
Q R(0) = Ex<po[t(0, X)].

Define
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General solution : Gibbs posterior

For the general machine learning problem :
Q@ Xi,...,X,iid from P°
Q R(0) = Ex<po[t(0, X)].

Define

Gibbs posterior, EWA, ...

Tna(0) o< exp[—anR,(8)]m(6).
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Back to Example 2 : tempered posteriors

Note : in the case of parametric estimation,

7(6).

i=1

Tna(#) o< exp[—anR,()]7(F) = exp [a > " log p(X;)
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Back to Example 2 : tempered posteriors

Note : in the case of parametric estimation,

7(6).

i=1

Tna(#) o< exp[—anR,()]7(F) = exp [a > " log p(X;)

The tempered posterior

Tna(0) o< [La(O)]°m(d6).
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Back to Example 2 : tempered posteriors

Note : in the case of parametric estimation,

Tna(#) o< exp[—anR,()]7(F) = exp [a > " log po(Xi) | 7(6).

i=1

The tempered posterior

Tna(0) o< [La(O)]°m(d6).

Tempered posteriors are actually very useful for statistical
inference.
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Back to Example 2 : tempered posteriors

@ easier to sample from.

@ R.M. Neal. (1996). Sampling from multimodal distributions using tempered transitions. Statistics
and Computing.

@ G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.
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Back to Example 2 : tempered posteriors

@ easier to sample from.

@ R.M. Neal. (1996). Sampling from multimodal distributions using tempered transitions. Statistics
and Computing.

@ G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

@ more robust to model misspecification.

@ P. Griinwald and T. Van Ommen (2017). Inconsistency of Bayesian inference for misspecified
linear models, and a proposal for repairing it. Bayesian Analysis.
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Back to Example 2 : tempered posteriors

@ easier to sample from.

@ R.M. Neal. (1996). Sampling from multimodal distributions using tempered transitions. Statistics
and Computing.

@ G. Behrens, N. Friel & M. Hurn. (2012). Tuning tempered transitions. Statistics and Computing.

@ more robust to model misspecification.

@ P. Griinwald and T. Van Ommen (2017). Inconsistency of Bayesian inference for misspecified
linear models, and a proposal for repairing it. Bayesian Analysis.

@ theoretical analysis simpler.

@ A. Bhattacharya, D. Pati & Y. Yang (2019). Bayesian fractional posteriors. The Annals of
Statistics.
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Notation — summary

@ We observe Xy, ..., X, i.i.d from P° unknown in X.
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Notation — summary

@ We observe Xy, ..., X, i.i.d from P° unknown in X.
© Loss function /.
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Notation — summary

@ We observe Xy, ..., X, i.i.d from P° unknown in X.
© Loss function /.
© Minimize R(0) = Expo[((0, X)].

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Introduction : computational issues in Bayesian learning Bayesian learning
Computational issues
Roadmap

Notation — summary

@ We observe Xy, ..., X, i.i.d from P° unknown in X.
© Loss function /.

© Minimize R(0) = Expo[((0, X)].
© Empirical risk

RA0) = 23 60, %),
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Notation — summary

@ We observe Xy, ..., X, i.i.d from P° unknown in X.
© Loss function /.

© Minimize R(0) = Expo[((0, X)].
© Empirical risk

RA0) = 23 60, %),

© Temperature o > 0, Gibbs or tempered posterior

Tna(0) x exp[—anR,(0)]7(6).
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Computational problem

Apart from a few classical examples, 7, is intractable.
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Computational problem

Apart from a few classical examples, 7, is intractable.
Popular methods to compute / sample from the (tempered)
posterior :
@ Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo, ABC
etc.
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Computational problem

Apart from a few classical examples, 7, is intractable.
Popular methods to compute / sample from the (tempered)
posterior :

@ Monte-Carlo methods : MCMC (Gibbs Sampler,
Metropolis-Hastings), SMC, Langevin Monte-Carlo, ABC
etc.

@ optimization methods : variational approximations or
variational inference (VI) and expectation-propagation

(EP).
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Roadmap

|) Lecture 1 : approximate Bayesian inference in ML.

© Introduction.
© Definition of VI.
© Examples of VI.

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Introduction : computational issues in Bayesian learning Bayesian learning
Computational issues
Roadmap

Roadmap

|) Lecture 1 : approximate Bayesian inference in ML.

© Introduction.
© Definition of VI.
© Examples of VI.

II) Lecture 2 : statistical analysis of VI.
With theorems and all!
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Roadmap

|) Lecture 1 : approximate Bayesian inference in ML.

© Introduction.
© Definition of VI.
© Examples of VI.

II) Lecture 2 : statistical analysis of VI.
With theorems and all!

I11) Seminar (Thursday next week) : online VI.
For data streams or large-scale learning.
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Lecture 1

Introduction : computational issues in Bayesian learning
@ Bayesian learning

o Computational issues

@ Roadmap

@ Variational Approximations : Definition

@ Definition of VI
e The ELBO
@ Strategies for ELBO maximization

Examples of Variational Approximations in Machine
Learning

@ Recommender systems and matrix completion

@ Deep learning
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Variational Approximations : Definition

@ Variational Approximations : Definition
@ Definition of VI
e The ELBO

@ Strategies for ELBO maximization
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Reminder on Kullback divergence

Definition — Kullback divergence

Let P and Q@ be two probability distributions with p.d.f p and
q respectively. Then :

K(P. Q) = Ever log (00| = [1og (227 pladde
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Reminder on Kullback divergence

Definition — Kullback divergence

K(P, Q) = Eyop [Iog (jg( ))} _ / o (%) p(u)du.

K(P,Q)>0and K(P,Q)=0< P=Q.
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Definition of VI
Variational Approximations : Definition The ELBO

Strategies for ELBO maximization

Reminder on Kullback divergence

Definition — Kullback divergence

K(P, Q) = Eyop [Iog (jg( ))} _ / o (%) p(u)du.

K(P,Q)>0and K(P,Q)=0< P=Q.
Proof :

K(P.Q) = - [ log (ZED p(u)du

~log (/ {ZEZ” p(u)du) > log(1) = 0.
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Definition of VI

© Chose a tractable family F of probability distributions on
the parameter 6,
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Definition of VI

© Chose a tractable family F of probability distributions on
the parameter 6,
@ Define

Tno = argmin K(p, mn.q)-
pEF
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Definition of VI

© Chose a tractable family F of probability distributions on
the parameter 6,
@ Define

Tna = argmin K(p, Tpq)-
pEF

Examples of F :
@ parametric approximation

F={N(pX):peR) LeS}.
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Definition of VI

© Chose a tractable family F of probability distributions on
the parameter 6,
@ Define

Tna = argmin K(p, Tpq)-
pEF

Examples of F :
@ parametric approximation

F={N(pX):peR) LeS}.

@ mean-field approximation, 6 = (01,6,) € © = ©1 x ©,,
F i {p: p(df) = p1(db1) ® p2(db2)} .



Defi on of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

The ELBO
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The ELBO

0 < K(p,mna)

)

~ o, flog (o) =Rt O )
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Variational Approximations : Definition The ELBO
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The ELBO

0 < K(p,mna)

= Eo, [Iog (diia(e))]

~ o, flog (o) =Rt O )

= naEy., [R.(8)] + K(p, 7) + log Eg [exp(—naR,(0))] .
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

The ELBO

0 < K(p,mna)

= Eo, [Iog (diia(e))]

~ o, flog (o) =Rt O )

= naEy., [R.(8)] + K(p, 7) + log Eg [exp(—naR,(0))] .
That is,

Evidence = log Eg-. [exp(—naR,(0))]
> —nalg., [R(0)] — K(p, ™)
= ELBO(p) (Evidence Lower Bound).
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Alternative definition of VI with ELBO

We end up with two definitions of VI.
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Definition of VI
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Alternative definition of VI with ELBO

We end up with two definitions of VI.

© best approximation of the posterior

Tna = argmin K(p, Tpa),
pEF
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Definition of VI
Variational Approximations : Definition The ELBO
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Alternative definition of VI with ELBO

We end up with two definitions of VI.

© best approximation of the posterior

Tna = argmin K(p, Tpa),
pEF

© maximization of the evidence lower bound

Tina = argmax ELBO(p)
pEF

= arg max {—naEy., [R.(0)] — K(p,m)}.

pEF

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Donsker and Varadhan's variational inequality

Remark : from the above inequality

0 < K(p, mna) = —ELBO(p) + evidence,
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Donsker and Varadhan's variational inequality

Remark : from the above inequality
0 < K(p, mna) = —ELBO(p) + evidence,

it is clear that without the constraint p € F, the ELBO is
maximized by p = 7, ,.
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Donsker and Varadhan's variational inequality

Remark : from the above inequality
0 < K(p,mpa) = —ELBO(p) + evidence,

it is clear that without the constraint p € F, the ELBO is
maximized by p = 7, ,.

Theorem : Donsker and Varadhan's variational inequality

EGNWH’Q[Rn(H)] + K(W’;’—g’ﬂ) = ir;f {ngp[Rn(Q)] + ’C(:(;W)} .
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Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

How to maximize the ELBO 7
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

How to maximize the ELBO 7

Parametric variational inference : F = {g), A € A}
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

How to maximize the ELBO 7

Parametric variational inference : F = {g), A € A}

Gradient algorithm

)\t_l’_]_ — >\t + HVELBO(th)
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

How to maximize the ELBO 7

Parametric variational inference : F = {g), A € A}

Gradient algorithm

)\t_l’_]_ — >\t + HVELBO(th)

Usually, the gradient is not available in closed-form but often it
is possible to build an unbiased estimate of it : VELBO(qy,).
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

How to maximize the ELBO 7

Parametric variational inference : F = {g), A € A}

Gradient algorithm

)\t_l’_]_ — >\t + HVELBO(th)

Usually, the gradient is not available in closed-form but often it
is possible to build an unbiased estimate of it : VELBO(qy,).

Stochastic gradient algorithm

Aer1 = Ae + nVELBO(qy,).
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Stochastic gradient of the ELBO

Ex : g\ =N(u,0%1), A= (u,0) € R x R, 7 = N(0, /).
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Stochastic gradient of the ELBO

Ex : g\ =N(u,0%1), A= (u,0) € R x R, 7 = N(0, /).

ELBO(q))

= —Egpoq, [naR(0)] — K(gy, )

lpl® + k(0? — log(0?) — 1)
2

= —Egn(0,1) [naRn(pe + 00)]

and so, under for a smooth R,,

VELBO(qy) = —Egno,) [naV iR (1 + 09)]—< (Uu_ 2) ) ;
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Stochastic gradient of the ELBO

Ex : g\ =N(u,0%1), A= (u,0) € R x R, 7 = N(0, /).

ELBO(q))

= —Egpoq, [naR(0)] — K(gy, )

lpl® + k(0? — log(0?) — 1)
2

= —Egn(0,1) [naRn(pe + 00)]

and so, under for a smooth R,,

VELBO(qy) = —Egno,) [naV iR (1 + 09)]—< (Uu_ 2) ) ;

N|x

VELBO(qy) = — ( m0 ST R+ 06)) + p | ) |

s R+ 00) + & (o - 2

o
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Mean-field approximation

Mean-field variational approximation :

F :{p: p(dd) = p1(db:) @ pa(db2)} .

Alternate optimization

Pttt = argmax ELBO(p; x pb)
pP1

p5T = arg max ELBO(pi™ x p,)
P2
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Mean-field approximation : explicit formula

Pt = argmax ELBO(p; ® p5)

P1

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Mean-field approximation : explicit formula

P1

Pt = argmax ELBO(p; ® p5) J

Assume ™ = m; X .

n:)?X {anE91NP1E92~p§[Rn(017 82)] + IC(IO17 7T1) + /C(pé, 7T2)} :
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Definition of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Mean-field approximation : explicit formula

P1

Pt = argmax ELBO(p; ® p5) J

Assume ™ = m; X .

max {anEg, ~p, Bt [Rn(61, 02)] + K(p1, m1) + K(p5, m2) } -
Use Donsker and Varadhan's variational formula.

PEL(01) o< exp [—naBe, e [Ra(61, 62)|61]] m1(61). |
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Defi on of VI
Variational Approximations : Definition The ELBO
Strategies for ELBO maximization

Further reading

Recent survey on variational inference :

@ D. M. Blei, A. Kucukelbir & J. D. McAuliffe (2017). Variational inference : A review for J

statisticians. Journal of the American Statistical Association.
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

ETIIES

© Examples of Variational Approximations in Machine
Learning
@ Recommender systems and matrix completion
@ Deep learning
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Recommender systems and matrix completion
Deep learning

Examples of Variational Approximations in Machine Learning

Example 1 : recommendation via matrix completion

‘~ ‘>‘ *
o 2 D

Only Lovers
|HULHOLLAND Left Alive

Claire 4 ? 3
Nial ? 4 ?
Brendon ? 5 4
Andrew ? 4 ?
Adrian 1 ? ?
Damien ? 1 ?

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Recommender systems and matrix completion
Deep learning

Examples of Variational Approximations in Machine Learning

The Netflix challenge

pazm =

L] (7L B K = T
E[‘J'.IH:.U"S IE\f-rleﬂlc: U\’!-’)’. £ 1,000,000 =
OME MiLLIoN wf ey
con The Netflix Brize wd [attinga
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Matrix completion : notations

The parameter 6 is a matrix M® € R™P with m,p > 1.
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Matrix completion : notations

The parameter 6 is a matrix M® € R™P with m,p > 1.
Under Py, the observations are random entries of this matrix
with possible noise :

Yi =M + e«

ik ok

where the (ix,jik) are i.i.d U({1,...,m} x {1,...,p}).
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Matrix completion : notations

The parameter 6 is a matrix M® € R™P with m,p > 1.
Under Py, the observations are random entries of this matrix
with possible noise :

Yi =M + e«

ik ok

where the (ix,jk) are i.i.d U({1,...,m} x {1,...,p}). Assume
that the &, are i.i.d N(0,0?), 0® known.
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Matrix completion : notations

The parameter 6 is a matrix M® € R™P with m,p > 1.
Under Py, the observations are random entries of this matrix
with possible noise :

Y= M° . +¢,

ik Jk

where the (i, jx) are i.id U({1,...,m} x {1,...,p}). Assume
that the g4 are i.i.d N(0,02), o known. We have

1 < (M ,2 M — N|2
]C(PM,PN Z >.I J :H HF

m
pllJl

202mp
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Matrix completion : notations

The parameter 6 is a matrix M® € R™P with m,p > 1.
Under Py, the observations are random entries of this matrix
with possible noise :
0
Yi= M’k ge 1€k

where the (i, jx) are i.id U({1,...,m} x {1,...,p}). Assume
that the g4 are i.i.d N(0,02), o known. We have

1 < (M ,2 M — N|2
]C(PM,PN Z >.I J :H HF

m
pllJl

202mp

Usual assumption : M? is low-rank.
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Prior specification - main idea

Define :
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Prior specification - main idea

Define :

M= U VT
~— =~

pxXm pxk kxm

Let U, ~ N(0,~/) denote the (-th column of M, we have :

M = UlVy)T = rank(M) < k.

)

k
(=1
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Prior specification - adaptation

@ R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML.
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Prior specification - adaptation

@ R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML.

with k large - e.g. k = min(p, m).
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Prior specification - adaptation

@ R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC.
Proceedings of ICML.

with k large - e.g. k = min(p, m).

Definition of 7 :
o U.Vg, \/.74 ~ N(07 ”,‘"(5/):
@ 7, is itself random, such that most of the 7, ~ 0

— ~ Gamma(a, b).
e
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Variational approximation

@ Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction.
Proceedings of KDD cup and workshop.

Mean-field approximation, F given by :

m P K
(AU, dV,dv) = Q) pu,(dU;.) ) pv,(dV;,.) @) ps (18-
i=1 j=1 k=1
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Beeplciie

Variational approximation

@ Y. J. Lim & Y. W. Teh (2007). Variational Bayesian approach to movie rating prediction.
Proceedings of KDD cup and workshop.

Mean-field approximation, F given by :
m P K
p(dU,dV, dv) = X pu,(AU;.) Q) pv,(dV].) ) o ().
i=1 j=1 k=1

It can be shown that

Q py, is N(m[, V),

e p\/J is N(I’I];,VVJ'),

Q p,, isinverse-T'(a+ (my + my)/2, By),
for some m x K matrix m whose rows are denoted by m; .,
some p X K matrix n and some vector 8 = (1, ..., Bk)-
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Recommender systems and matrix completion
Examples of Variational Approximations in Machine Learning Desplsaie

The VB algorithm

The parameters are updated iteratively through the formulae
0 moments of U :
= *V > Vicdk Jk

keig =i
2 my + m
_a T 1 2 . -1
viti= T T Wy g ]+ (” f) diag($5)
" Kig=i
e moments of V :
T _
Ny, = 7W 22 Yiegm
kijk=J
_ 2a T my + m2 . _
W 1= - Z [Vik +mik,4m,’k,.} + <3+ f) diag(3) *
Kijx=i

e moments of v :
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Despleaine

Example 2 : deep learning

Hidden

Input

Source : Wikipedia.
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Recommender systems and matrix completion
Deep learning

Examples of Variational Approximations in Machine Learning

Example 2 : deep learning

Neural network, recursive
definition :

Hidden

fE),G(X) =X,
st

i (¢
f;(Jr)l 9 Z I,_]) E(JG) )

; fi(x ZQL)’(

Source : Wikipedia.

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1



Recommender systems and matrix completion
Deep learning

Examples of Variational Approximations in Machine Learning

Example 2 : deep learning

Neural network, recursive
definition :

Hidden

fE),G(X) =X,

Sp
i (¢
fe(+)1 o(X) = Z Q,J) e(’é) )
j=1

. / SL
Source : Wikipedia. Prior 7 : independent

0,(5-) ~ N(0,02).

Pierre Alquier, RIKEN AIP Lectures on Variational Inference - 1
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Examples of Variational Approximations in Machine Learning Despleaine

Example 2 : deep learning

The posterior is extremely complicated.
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Recommender systems and matrix completion

Examples of Variational Approximations in Machine Learning Despleaine

Example 2 : deep learning

The posterior is extremely complicated.

Using a mean-field variational approximation where all the 9,(5.)
are independent A/(m| m; ; 7( (¢ )) ) a posteriori, the authors of :

@ K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota & M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurlPS.

proposed a refined stochastic gradient algorithm and reached
state-of-the-art performances on large datasets such as
CIFAR-10 and ImageNet.
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Recommender systems and matrix completion
Deep learning

Examples of Variational Approximations in Machine Learning

Example 2 : deep learning

@ K. Osawa, S. Swaroop, A. Jain, R. Eschenhagen, R. E. Turner, R. Yokota & M. E. Khan (2019).
Practical Deep Learning with Bayesian Principles. NeurlPS.
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