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The Maximum Likelihood Estimator (MLE)

Let Xi,...,X, beiidin X from a probability distribution P,.

Statistical inference :
@ propose a model (Py, 0 € ©), assume Py = Py,.
@ compute 0, = 0,(Xy,..., X,).

Letting py denote the density of Py, then
OMLE — arg max L,(0), where L,(6) = Hpg(X
0o ,

Example : P(yo) = N(m, 0?) then

%Z ; and 62 il(X—“
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MLE not unique / not consistent

Example :
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exp(—|x —0)
2¢/m|x — 0|
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Minimum Distance Estimation (MDE)

MLE not unique / not consistent

Example : M

exp(—|x — 6 f“\

pe(x) — M) 2 /' \\
2¢/m|x — 0| 2 Nl

L(Q): exp(—27:1|X;—8|) o
' @varIliaviXi—o
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MLE fails in the presence of outliers

What is an outlier ?
Huber proposed the contamination model : with probability ¢,
X; is not drawn from Py, but from @ that can be anything :

Po = (1—8)P90 +€Q

Example : Py = Unif0, 6], then

1<i<n

1~ .
La(0) = on H Lio<x,<y = 0 = max X;.
i—1

In the case of the following contamination, the MLE is
extremely far from the truth :

Py = (1 — &).Unif[0,1] + e (10, 1)...



Some problems with the likelihood and how to fix them Some problems with the likelihood
Minimum Distance Estimation (MDE)

Minimum Distance Estimation

A 1
Empirical distribution : P, := — Ox..
mpirical distribution . Z X;

Minimum Distance Estimation (MDE)

Let d(-,-) be a metric on probability distributions.

Oy := argmind (Pg, P,,) :
0cO
@ Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics.

Idea : MDE with an adequate d leads to robust estimation.

@ Bickel, P. J. (1976). Another look at robustness : a review of reviews and some new

developments. Scandinavian Journal of Statistics. Discussion by Sture Holm.

@ Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estimation. JASA.

@ Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's
entropy. Annals of Statistics.
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Integral Probability Semimetrics

Integral Probability Semimetrics (IPS)

Let F be a set of real-valued, measurable functions and put

dr(P,Q) = ?gjpt Ex~p[f(X)] — Ex~olf(X)]|.

@ Miiller, A. (1997). Integral probability metrics and their generating classes of functions. Applied
Probability.

@ assumptions required in order to ensure that
dr(P,Q) = 0= P = Q (that is, dr is a metric).

@ assumptions required in order to ensure that dr < +o0.
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Non-asymptotic bound for MDE

@ Xi,..., X, iid from Py,
e forany f € F, sup,cy |f(x)] < 1.

Then

E [d;(P@ PO)] < inf dr(Py, Po) + 4.Rad,(F).

dr’

n

1
Rad,(F) :=supEy, . v,op Eey..c, |SUP = Y €F(Y7)
B v

where €1, ..., €, are i.i.d Rademacher variables :
Ple; = 1) = P(e; = —1) = 1/2.
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Example 1 : set of indicators

O P N MR

Image from Wikipédia. 3 points shattered 4 points impossible

Assume that F = {14, A € A} for some A C P(X),
® Sr(x1,. .., %) ={(f(x),...,f(x)), f € F},
@ VO(F) :=max{n: Ixy,..., Xn, |Sr(x1,.... %) =2"}.

Theorem (Bartlett and Mendelson)

Rad,(F) < \/2.\/0(?) log(n+1)

n

@ Bartlett, P. L. & Mendelson, S. (2002). Rademacher and Gaussian complexities : Risk bounds and
structural results. JMLR.

v
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Example 1 : KS and TV distances

Two classical examples :
e A = {all measurable sets in X'}, then dx(-,) is the total
variation distance TV(-,-).
e VC(F) = +o0 when |X| = +o0,
e in general, Rad,(F) -~ 0.
@ XY =R, A= {(—o00,x], x € R}, then dx(:,-) is the
Kolmogorov-Smirnov distance KS(-, -).
o KS distance was actually proposed by S. Holm for robust

estimation,
e VC(F)=1
: 2log(n+1)
E [KS(P@KS, PO)] S 6‘22 KS(PQ, Po) + 4. f |
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Example 2 : Maximum Mean Discrepancy (MMD)

@ Let (H,(-,-);) be a RKHS with kernel

k(Xay) = <¢(X)7 ¢(y)>"H :
o If ||o(x)|ln = k(x,x) <1 then Ex.p[¢p(X)] is well-defined .

@ The map P — Ex..p[¢(X)] is one-to-one if k is characteristic.

@ For example, k(x,y) = exp(—||x — y||?>/~v?) works.
Definition - MMD

MMD(P, Q) = sup

feH
‘ H

[l <1
Pierre Alquier, RIKEN AIP Discrepancy-based ABC
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Example 2 : MMD

k
F={F €M [l < 1) = Rady(F) < 1/ 20 A0

For k bounded by 1 and characteristic,

2

L Po)] < inf MMD(Py, Po) + .

Joint work with Badr-Eddine Chérief-
Abdellatif (Oxford).
@ Chérief-Abdellatif, B.-E. and Alquier, P. Finite Sample

Properties of Parametric MMD Estimation : Robustness
to Misspecification and Dependence. Bernoulli, 2022.

Discrepancy-based ABC
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Example 2 : MMD

We actually have
MMD;(Py, Pr) = Ex xrpy [K(X, X') 1——ZEX~P9[k<x,,x>1

+— > k(X X;)

and so 1$i7n

VoMMD2(P,, P,)

n

12k (X;, X)
i=1

that can be approximated by sampling from P,.
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Example 2 : MMD

Some problems with the likelihood
Minimum Distance Estimation (MDE)

@ Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via
maximum mean discrepancy optimization. UA/I 2015.

define the estimator and used it to train GANs.

5 L fy [
Y 0 y 2 ==
2 s S o]
£y o i
¥ O s o i
= -- e L]
= S 3 o =
Iy g £ 2
- ; i
13 1 -
A Gt :
-l - vl ¥ Sl =

@ Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative
Models with Maximum Mean Discrepancy. Preprint arXiv :1906.05944.

assumptions =- ﬁ(éMMDk — bp) ~» N(O7 Vo(k)).
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Example 3 : Wasserstein

Another classical metric belongs to the IPS family :

Ws(P, Q)= sup |Ex-p[f(X)] — Ex<olf(X)]

f: X >R
Lip(f) < 1

where Lip(f) := sup,, |f(x) — f(y)[/d(x,y).

@ In general, Rad,(F) - 0, so will not converge in full
generality as with MMD and KS.

@ However, nice results can be proven under additional
assumptions :

Wasserstein distance. Information and Inference : A Journal of the IMA.
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MDE and robustness

Minimum Distance Estimation (MDE)

Reminder

E [df(Pé

PO)] < Jnf dr(Py, Po) + 4Rads(F).

dr’

Huber's contamination model : Py = (1 — €) Py, + Q.

dz(Pg,, Po) = sup [Ex~py, F(X) = (1 = €)Exnpy, F(X) — eEx~qf (X)|
S
= sup |eEx~p,, F(X) — cEx~qf (X)
feFr

=ce.dr(Pg,, Q) <2 ifforany f € F,sup|f(x)| <1

Corollary - in Huber's contamination model

E |dr(P, . Pgo)] < 4¢ + 4. Rad,(F).
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MDE and robustness : toy experiment

Model : N(0,1), Xi,...,X, i.id N(6p,1), n =100 and we
repeat the exp. 200 times. Kernel k(x,y) = exp(—|x — y|).

Orie QAKS
mean abs. error 0.081 0.088

Now, ¢ = 2% of the observations drawn from a Cauchy.

mean abs. error  0.276 0.088
Now, ¢ = 1% are replaced by 1, 000.

mean abs. error 10.008 0.082
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Generalized posteriors

Posterior

(0| X1, ..., Xs) o L,(0)7(6).

Generalized posterior

75.r,(0) < exp(—f.Rn(0))7(6).

@ old idea in ML (PAC-Bayes, forecasting with expert
advice...) and in statistics (Gibbs posteriors...)
@ popularized / extended and studied by :

@ Bissiri, P. G., Holmes, C. C. & Walker, S. G. (2016). A general framework for updating belief
distributions. JRSS-B.

@ Knoblauch, J., Jewson, J. & Damoulas, T. (2022). An Optimization-centric View on Bayes’

Rule : Reviewing and Generalizing Variational Inference. JMLR (to appear).
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Generalizing the posterior with IPS

Generalized posterior with IPS

#5.8,(0) o< exp(—B.dx(Ps, P,))m(6).

@ in the MMD case : non-asymptotic result in

@ Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes : Robust Bayesian Estimation via
Maximum Mean Discrepancy. Proceedings of AABI.

@ asymptotic results to come very
soon in a joint paper with
Takuo Matsubara (Newcastle)
and Jeremias Knoblauch (UCL).

@ both papers discuss computation via variational
approximations or MCMC.
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ABC with IPS

What follows is based on a joint work with :

Sirio Legramanti Daniele Durante
(University of Bergamo)  (Bocconi University, Milan)
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Reminder on ABC

Approximate Bayesian Computation (ABC)
input : sample X = (Xi,...,X,), model (Py, 0 € ©), prior
7, statistic S, distance d and threshold e.
(i) sample 6 ~ ,
(ii) sample Y = (Yi,...,
o if 5(S(XT), S(¥7))
o else goto (i).

Y,) i.i.d. from Py :
<e

return 0,

@ how close is the distribution of the output to the posterior
(0| X1, ..., Xs) 7

@ reverse point of view : what are the properties of the
“generalized posterior’ we sample from?
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ABC with IPS

Here, we study the situation :
o S(x1,...,x,) =137, 6, the empirical distribution,

o 4(P,Q) = dr(P, Q).
input : sample X{" = (Xi,...,X,), model (Py,0 € ©), prior
m, set of functlons F and threshold ¢. Put P, = L 3°7 &

(i) sample 6 ~ ,
(ii) sample Y" = (Y1,...,Y,) iid. from Py and put
AY = 27 1 5Yv
o if dr(Ppy, PY) < e return 0,
o else goto (i).

Notation : the output ¥ ~ 77 (-). J
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Properties of 77 (-)

3 questions :

Q 7 .(0) E\—7> (0| X7).
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Contraction of the ABC posterior

.= inf dr(Py, Po).
€ elgedf(e 0)

Theorem 3

Assume :
@ forall e >0, 7({0 : d=(Py, Po) < ex +€}) > ce.
@ Vf e F, supcx |f(x)] <1

*] Rad,,(f) T} 0.

Let €, be any sequence such that ¢,/Rad,(F) — oo and ne2 — co.
Then, with probability — 1 on the sample, for any M, — oo,

M,
e, log 2.39
T eoten | d7(Po,Po) < €x + =2 + Rad,(F) + || —= | >1- =
n
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Example : MMD-ABC with bounded kernel

As an example, consider MMDy when k(x, x) <1, as

@ Park, M., Jitkrittum, W. & Sejdinovic, D. (2016). K2-ABC : Approximate Bayesian Computation
with kernel embeddings. AISTATS.

Corollary

Assume :

@ forall e >0, 7({0 : d=(Py, Po) < ex +€}) > ce.
Let 1/v/n < €, < 1. Then, with probability — 1 on the sample, for any

M, — oo,
1+ ,/log Y d
4 n ed 2.3
AT e | MMDy(Py, Pp) < ey 424 — Y "% ) > 71—

Vvn - cM,’
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A result without Rademacher complexity

Assume :

@ forall € >0, m({0 : dr(Py, Po) < €. +€}) > ce?,

Po a.s.

*] d]:(:‘sn, P()) — 0,

© Pyyop, (dr(BY.Py) > €) < c(6)fy(c) where fy(e) —— 0.

Let €, — 0 and f,(e,) — 0. Then, with probability — 1 on the sample,
for some C > 0 and any M, — oo,

4 @ C
AT eter (dF(P6'7 Po) < e, + % + (;/I)) >1- 5.
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Example : MMD-ABC with unbounded kernel

Corollary

Assume :
@ forall e >0, ({0 : dr(Pg, Po) < €x +€}) > ce?,
@ Ez glk(Z,2)] < +o0 for @ = Py and any Q € {Py,0 € ©}.

Let 1/n?? < €, < 1. Then, with probability — 1 on the sample, there is
a C > 0 such that for any M, — oo,

n,e«+e€n

4de 1 M C
ATE n n

T MMDy(Pg, Py) < € + — + — 4| — = =,
( k( 0 0)_6 3 n 6g> - Mn
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Example : Wasserstein-ABC

@ Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

considered ABC with the Wasserstein distance, and proved
Theorem 4 in this case (note that our Theorem 4 is a
restatement of their result for a general IPS).

However, it not easy to prove non-trivial bounds :
Pyop,(dr(P), Ps) > €) < c(0)fa(e),
and the examples they cite require X’ to be a bounded space.

@ Weed, J. & Bach, F. (2019). Sharp asymptotic and finite-sample rates of convergence of
empirical measures in Wasserstein distance. Bernoulli.
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A Bayesian(?) point of view

n — oo, fixed €

@ Jiang, B., Wu, T.-Y. & Wong, W. H. (2018). Approximate Bayesian computation with
Kullback-Leibler divergence as data discrepancy. AISTATS.

provides a general result that can be directly used here :

Theorem (simplified version)

Assume :
e Rad,(F) — 0,
then for any measurable B,

#7.(6 € B) = w(6 € Bldr(Ps, Po) < . +¢).

n—o0
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A Bayesian(?) point of view

e \, 0, fixed n

@ Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian
Computation with the Wasserstein distance. JRSS-B.

provides a general result that can be directly used here :

Theorem (simplified version)

Assume :
@ Py has continuous, bounded densities py, and Py = Py,

@ dr is continous, and is a metric,
then a.s. with respect to the sample, for any measurable B,

#7.(0 € B) = (6 € B|X]).
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Experimental results

25

20
o

15 B3 0%
B3 5%
B3 10%

104 - B3 1%

05

0.0

MMD Wasserstein KL Gamma “Exact” Gaussian
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Other current and future directions

@ go beyond IPS, see (among others) f-divergences or
energy statistics in
@ Frazier, D. T. (2020). Robust and efficient Approximate Bayesian Computation : A minimum
distance approach. Preprint arXiv.

@ Nguyen, H. D., Arbel, J., Lii, H. and Forbes, F. (2020). Approximate Bayesian computation via
the energy statistic. IEEE Access.

@ solve practical issues : choice of €,, choice of k in MMD,.
@ semi-parametric models (with J.-D. Fermanian (ENSAE
Paris), A. Derumigny (TU Delft) and M. Gerber (Bristol).

« K2
= PR
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@ Alquier, P., Chérief-Abdellatif,
B.-E., Derumigny, A. and
Fermanian, J.-D. Estimation of
copulas via Maximum Mean
Discrepancy. JASA, to appear.

@ Alquier, P. and Gerber, M. (2020).

Universal Robust Regression via
Maximum Mean Discrepancy.
Preprint arXiv.
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