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Deviation inequalities for time series : introduction Why deviation inequalities ?
Deviation inequalities for time series

Objective

General problem in probability and statistics

P %ZH:X,-—%E(ZH:X,) >x b <2

i= i=
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Deviation inequalities for time series

What can we expect ? (1/2)

Chebyshev's inequality

Var(U)

x2

IP{|U—E(U)| > x} <

In a first time, assume the X;'s are independent, E(X;) = u
and Var(X;) = o2,

Pierre Alquier, RIKEN AIP Deviation inequalities for Markov chains



Deviation inequalities for time seri introduction

Deviation inequalities for time series

But...

(Photo : Wikipedia).
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What can we expect ? (2/2)
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Chernoff bound

Deviation inequalities for time series

Chernoff bound
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Deviation inequalities for time series

Hoeffding's inequality

Hoeffding's lemma - U bounded : a < U < b

sz(b—a)2

E (eS1U-50)) < o=%

Hoeffding's inequality

Assume the X;'s are independent and a < X; < b,

n
2nx2

1 _
P2 X —p| > x b <2e G-a2,
Xz <

i=1
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McDiarmid's inequality

McDiarmid's inequality

Assume the X;'s are independent and f : X" — R such that

[F(X0y - ooy Xim1y Xiy XLy« e o3 Xn) — F(X1y ooy Xi—1, Xy Xig 1, -+, Xn)| < €.

then

P{‘f(xl,,Xn)_E[f(X177Xn)]‘>X}<2e Ci".

n

We recover Hoeffding for f(xq,....x,) = > i xi, ¢ = (b—a).
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Assumptions on moments

Hoeffding's lemma - U bounded : a < U < b

52(b73)2

E(es[U—]E(U)]) <%

In general, why not assuming U satisfies such an inequality ?

Definition - sub-Gaussian random variable U

E (es[U—E(U)]) < esng

U sub-Gaussian < Vk € N, E(|U[**) < k! Cf.
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Deviation inequalities for time series

Objective of this talk

Objective : for some time series {X;,t =0

P{‘%ixt _ %E(i)@) > x} <?
t=1 =1l

P{‘f(Xl,...,X,,)—]E[f(Xl,...,X,,)]‘ 2x} -

n

E (o5 Sta(in)

1 n
P{;t;xtnzx}g —
— e—stE (R0
t=1
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Objective of this talk

Objective : for some time series {X;,t =0,...,00}

>xp <7

Pl 2e(2x)
t=1 t=1

P{‘f(Xl,...,X,,)—]E[f(Xl,...,X,,)]‘ 2x} -

n
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Deviation for time series : an active research field

otes in

190 LectureNotes in Statisics

Jstme Dececke.PaulDoukhan
Gabrel LangJosé Raael ednR.-Sana Lauhichi
émentine Priew:

With Exampls and Applications
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A remarkable result for Markov chains

ScienceDirect processes

Appic

eir
applications

@ study Markov chains of
Deviation inequalities for separately Lipschitz t h e 'Form

functionals of iterated random functions

sme Dedecker®*, Xiequan Fan®

X, = F(Xo-1,€n)

@ provide deviation
inequalities when

1. A dlass of iterated random functions

E{d(F(X, en), F(X', s,,)) } < pd(x,x")

for some p < 1.
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Deviation inequalities for time series : introduction Why deviation inequalities ?

Example (2/2)

Deviation inequalities for time series

AR(1) process
Xn — F(anla En) = an,1 +é&p
|F(x,€n) = F(X', €n)| < plx — X

M M W ‘ \{ | . ““'x ,"\f‘lﬁl f V“j‘"ﬂu‘»‘“\

p:0.8 p:
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What happens for non-homogeneous chains ?

AR(1) process with varying coefficients

Pierre Alquier, RIKEN AIP Deviation inequalities for Markov chains



Inequalities for non-homogeneous Markov chains
Non-homogeneous Markov chains Applications in machine learning

Inequalities for non-homogeneous Markov chains

© Non-homogeneous Markov chains
@ Inequalities for non-homogeneous Markov chains
@ Applications in machine learning
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A class of non-homogeneous Markov chains

@ X, takes values in (X, d). Example : X = R?, d large.

@ (g,) are i.i.d random variables in (), 0).

QO X, = Fo(Xo-1,€n).
(2] ]E{d(F,,(X,&,),F,,(X’,&?,,))} < pad(x,x').

° d(F"(X’Y)aFn(X,y')> < 70y, ¥') + -
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VAR with variying coefficients

@ Phillips, P.C.B. (1988). Regression theory for near integrated time series. Econometrica. J

e X, e RY.
@ (g,) are ii.d N(0,02ly).

o Xn — Fn(Xn—lygn) = Aan—l + &p.
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Example : stochastic optimization

N

Minimize L(x) = ZZ,-(X)

i=1

For | drawn uniformly in {1,..., N} with M elements,

A 1
Vil(x) = ; Vii(x).
@ Projected tochastic gradient descent (SGD) :

Xo = e [Xom1 = VLX)

@ Projected stochastic gradient Langevin descent (SGLD) :
Xo = Me [Xoa = 2¥aL(X00) + 5]
n« n
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Example : SGD

Assume L is m-strongly convex, M-Lipschitz and VL is
(-Lipschitz.

SGD-a€0,1], v>0
Q X, = Fn(Xn—lygn) =ll¢ [Xn—l - nlaﬁnL(Xn—l)]'
(2] °

o
- 2vM
e {n — yTn = 0.

ne
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Example : SGLD

Assume L is m-strongly convex, M-Lipschitz and VL is
(-Lipschitz.

SGLD - o, 5 €[0,1], v,n >0, g, ~
Q X, = Fn(Xn—lygn) = nC [Xn—l - lczﬁnL()(”—l) + n%én]_
Q@ o

o
- 2vM
e 617: -Tn:nif-

ne
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Deviation inequality

Theorem (Proposition 3.1 in the paper) - p € [1,4+00],d € N
Assume f : X" — R9 such that

|f(X1,...,X;,...,X,,) — f(Xl,...,X,-/,...,X,,)| S d(X,’,X;),

E.,([Ec 6(gn, £,)]¥) < Cfk! and a similar condition for X,

b H FX, . Xo) ZEIFQG, - XN
n P
o= CpdnX T+ én < S, a€e(0,1]
< { o-Gantdorttla) T+ & < 5, a€0,1),
e—Cpan* 252  Tn+&n < T € (0,1/2).
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Proof technique

The proof technique relies on martingale decomposition :
F(X1,- o, Xa) = BIF(X0, . Xa)l = D M,
t=1

where
M, = E[f(X, ..., X)) X0, X]=E[f (X0, .. X)X, - ., Xea]:
Conditional Chernoff :

E (e% S Mt) E [e% Y MR (e%M"|X1, . ,Xn—l)]

eSX eSX

Here the study of E (en™~|Xy, ..., X,_1) requires some care...
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Shameless name-dropping

In the paper, we provide an exhaustive list of inequalities,
under various moment assumptions :

@ exponential inequalities :

e McDiarmid,
o Hoeffding,
e Bernstein.

@ semi-exponential inequalities :

o Fuk-Nagaev,
o von Bahr-Esseen.

@ moment inequalities :

o Marcinkiewicz-Zygmund,
@ von Bahr-Esseen.
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Applications

© Non-homogeneous Markov chains
@ Inequalities for non-homogeneous Markov chains
@ Applications in machine learning
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Empirical risk minimization (1/2)

In the stationary case,

then
E[f(Xi,..., X,)] =E[((0,X)] = R(6).

—Ccnx

B{[R0) = R0)| 2 x} < § erertaoroian

_Cn172ux2
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Empirical risk minimization (2/2)

0 = arg min R,(6).
6o

Say Card(©) = N is finite,

/\/e—CI'IX7
P{RO)2 Rl + x| < § Neorinsy,

Neicnlf2ax2
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Application to SGLD (1/2)

L is m-strongly convex, M-Lipschitz and VL is ¢-Lipschitz.
SGLD - a € (0,1), <a,v>0,n7>0

Xo =M [ Xo1 = LYol (Xoma) + —5e| Ko = %th.
t=1

For some ¢, 4 = ¢p.q(¢, m, M),

i

)_<n — IE’()_<n)

> X} < e—Cp,d”(X1x>1+X21xg1)
p
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Application to SGLD (2/2)

Theorem - Moulines and Bach 2011

S G
E|IX, - x"[3 < =
n

@ Moulines, E. and Bach, F. (2011). Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. NIPS.

Combine with our inequality
1 1
2 n

>1—0.

P H)_(,, —x*
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