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Why deviation inequalities ?
Deviation inequalities for time series

Objective

General problem in probability and statistics

P

{∣∣∣∣1n
n∑

i=1

Xi −
1
n
E
( n∑

i=1

Xi

)∣∣∣∣ ≥ x

}
≤ ?
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Why deviation inequalities ?
Deviation inequalities for time series

What can we expect ? (1/2)

Chebyshev’s inequality

P
{
|U − E(U)| ≥ x

}
≤ Var(U)

x2 .

In a first time, assume the Xi ’s are independent, E(Xi) = µ
and Var(Xi) = σ2,

P

{∣∣∣∣1n
n∑

i=1

Xi − µ
∣∣∣∣ ≥ x

}
≤ Var (

∑n
i=1 Xi)

n2x2

=
σ2

nx2 .
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But...

(Photo : Wikipedia).
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Why deviation inequalities ?
Deviation inequalities for time series

What can we expect ? (2/2)

P

{∣∣∣∣1n
n∑

i=1

Xi − µ
∣∣∣∣ ≥ x

}
≤ σ2

nx2 .

However, CLT :√
n

σ2

(
1
n

n∑
i=1

Xi − µ

)
 N (0, 1).

So, we expect :

P

{∣∣∣∣1n
n∑

i=1

Xi − µ
∣∣∣∣ ≥ x

}
' 2Φ

(
x
√
n

σ

)
∼ 2e−

x2n
2σ2

x
√
n

σ

√
2π
.
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Chernoff bound

Chernoff bound

P
{
U − E(U) ≥ x

}
= P

{
es(U−E(U)) ≥ esx

}
≤

E
(
es(U−E(U))

)
esx

.

P

{
1
n

n∑
i=1

Xi − µ ≥ x

}
≤

E
(
e

s
n

∑n
i=1(Xi−µ)

)
esx

= e−sx
n∏

i=1

E
(
e

s
n

(Xi−µ)
)
.
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Hoeffding’s inequality

P

{
1
n

n∑
i=1

Xi − µ ≥ x

}
≤ e−sx

n∏
i=1

E
(
e

s
n

(Xi−µ)
)
.

Hoeffding’s lemma - U bounded : a ≤ U ≤ b

E
(
es[U−E(U)]

)
≤ e

s2(b−a)2

8 .

Hoeffding’s inequality
Assume the Xi ’s are independent and a ≤ Xi ≤ b,

P

{∣∣∣∣1n
n∑

i=1

Xi − µ
∣∣∣∣ ≥ x

}
≤ 2e−

2nx2

(b−a)2 .
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McDiarmid’s inequality

McDiarmid’s inequality
Assume the Xi ’s are independent and f : X n → R such that

|f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)| ≤ c .

then

P
{∣∣∣∣ f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)]

n

∣∣∣∣ ≥ x

}
≤ 2e−

2x2n
c2 .

We recover Hoeffding for f (x1, . . . , xn) =
∑n

i=1 xi , c = (b− a).
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Assumptions on moments

Hoeffding’s lemma - U bounded : a ≤ U ≤ b

E
(
es[U−E(U)]

)
≤ e

s2(b−a)2

8 .

In general, why not assuming U satisfies such an inequality ?

Definition - sub-Gaussian random variable U

E
(
es[U−E(U)]

)
≤ es

2C2
0

U sub-Gaussian ⇔ ∀k ∈ N, E(|U |2k) ≤ k!C k
1 .
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Why deviation inequalities ?
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Objective of this talk

Objective : for some time series {Xt , t = 0, . . . ,∞}

P

{∣∣∣∣1n
n∑

t=1

Xt −
1
n
E
( n∑

t=1

Xt

)∣∣∣∣ ≥ x

}
≤ ?

P
{∣∣∣∣ f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)]

n

∣∣∣∣ ≥ x

}
≤ ?
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Objective of this talk

Objective : for some time series {Xt , t = 0, . . . ,∞}

P

{∣∣∣∣1n
n∑

t=1

Xt −
1
n
E
( n∑

t=1

Xt

)∣∣∣∣ ≥ x

}
≤ ?

P
{∣∣∣∣ f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)]

n

∣∣∣∣ ≥ x

}
≤ ?
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Deviation for time series : an active research field
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Why deviation inequalities ?
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A remarkable result for Markov chains

study Markov chains of
the form

Xn = F (Xn−1, εn)

provide deviation
inequalities when

E
{
d
(
F (x , εn),F (x

′, εn)
)}
≤ ρd(x , x ′)

for some ρ < 1.
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Why deviation inequalities ?
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Example (1/2)

AR(1) process

Xn = F (Xn−1, εn) := ρXn−1 + εn

|F (x , εn)− F (x ′, εn)| ≤ ρ|x − x ′|

ρ = 0 ρ = 0.5
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Why deviation inequalities ?
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Example (2/2)

AR(1) process

Xn = F (Xn−1, εn) := ρXn−1 + εn

|F (x , εn)− F (x ′, εn)| ≤ ρ|x − x ′|

ρ = 0.8 ρ = 1
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Why deviation inequalities ?
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What happens for non-homogeneous chains ?

AR(1) process with varying coefficients

Xn = Fn(Xn−1, εn) := ρnXn−1 + εn

ρn =
(
1− 1√

n

)
.
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Inequalities for non-homogeneous Markov chains
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A class of non-homogeneous Markov chains

Xn takes values in (X , d). Example : X = Rd , d large.
(εn) are i.i.d random variables in (Y , δ).

Definition
1 Xn = Fn(Xn−1, εn).

2 E
{
d
(
Fn(x , εn),Fn(x ′, εn)

)}
≤ ρnd(x , x ′).

3 d
(
Fn(x , y),Fn(x , y ′)

)
≤ τnδ(y , y ′) + ξn.
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VAR with variying coefficients

Phillips, P.C.B. (1988). Regression theory for near integrated time series. Econometrica.

Xn ∈ Rd .
(εn) are i.i.d N (0, σ2Id).

1 Xn = Fn(Xn−1, εn) = AnXn−1 + εn.
2 ρn = ‖An‖op = supx 6=0

‖Anx‖
‖x‖

<−−−→
n→∞

1.

3 τn = 1, ξn = 0.
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Example : stochastic optimization

Minimize L(x) =
N∑
i=1

`i(x)

For I drawn uniformly in {1, . . . ,N} with M elements,

∇̂nL(x) :=
1
M

∑
i∈I

∇`i(x).

Projected tochastic gradient descent (SGD) :

Xn = ΠC
[
Xn−1 −

γ

nα
∇̂nL(Xn−1)

]
Projected stochastic gradient Langevin descent (SGLD) :

Xn = ΠC
[
Xn−1 −

γ

nα
∇̂nL(Xn−1) +

η

nβ
εn

]
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Example : SGD

Assume L is m-strongly convex, M-Lipschitz and ∇L is
`-Lipschitz.

SGD - α ∈ [0, 1], γ > 0

1 Xn = Fn(Xn−1, εn) = ΠC
[
Xn−1 − γ

nα
∇̂nL(Xn−1)

]
.

2 ρn ∼ 1− mγ
nα for α > 0,

ρn = 1− 2mγ + `2γ2 if α = 0.
3 ξn = 2γM

nα
, τn = 0.
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Inequalities for non-homogeneous Markov chains
Applications in machine learning

Example : SGLD

Assume L is m-strongly convex, M-Lipschitz and ∇L is
`-Lipschitz.

SGLD - α, β ∈ [0, 1], γ, η > 0, εn ∼ N (0, 1)

1 Xn = Fn(Xn−1, εn) = ΠC
[
Xn−1 − γ

nα
∇̂nL(Xn−1) + η

nβ
εn

]
.

2 ρn ∼ 1− mγ
nα for α > 0,

ρn = 1− 2mγ + `2γ2 if α = 0.
3 ξn = 2γM

nα
, τn = η

nβ
.
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Deviation inequality

Theorem (Proposition 3.1 in the paper) - p ∈ [1,+∞], d ∈ N
Assume f : X n → Rd such that

|f (x1, . . . , xi , . . . , xn)− f (x1, . . . , x
′
i , . . . , xn)| ≤ d(xi , x

′
i ),

Eεn([Eε′nδ(εn, ε
′
n)]k) ≤ C k

1 k! and a similar condition for X1,

P

{∥∥∥∥ f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)]

n

∥∥∥∥
p

≥ x

}

≤

{
e−cp,dnx ρn ≤ 1− ρ < 1, τn + ξn ≤ τ

nα , α ∈ (0, 1]
e−cp,dn(x1x>1+x21x≤1) ρn ≤ 1− ρ

nα , τn + ξn ≤ τ
nα , α ∈ [0, 1),

e−cp,dn
1−2αx2

ρn ≤ 1− ρ
nα , τn + ξn ≤ τ ,α ∈ (0, 1/2).
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Proof technique

The proof technique relies on martingale decomposition :

f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)] =
n∑

t=1

Mt

where

Mt = E[f (X1, . . . ,Xn)|X1, . . . ,Xt ]−E[f (X1, . . . ,Xn)|X1, . . . ,Xt−1].

Conditional Chernoff :

E
(
e

s
n

∑n
t=1 Mt

)
esx

=
E
[
e

s
n

∑n−1
t=1 MtE

(
e

s
n
Mn |X1, . . . ,Xn−1

)]
esx

.

Here the study of E
(
e

s
n
Mn |X1, . . . ,Xn−1

)
requires some care...
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Shameless name-dropping

In the paper, we provide an exhaustive list of inequalities,
under various moment assumptions :

exponential inequalities :
McDiarmid,
Hoeffding,
Bernstein.

semi-exponential inequalities :
Fuk-Nagaev,
von Bahr-Esseen.

moment inequalities :
Marcinkiewicz-Zygmund,
von Bahr-Esseen.
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Empirical risk minimization (1/2)

In the stationary case,

f (X1, . . . ,Xn) =
1
n

n∑
t=1

`(θ,Xi) = Rn(θ)

then
E [f (X1, . . . ,Xn)] = E [`(θ,X )] = R(θ).

P
{∣∣∣R(θ)− Rn(θ)

∣∣∣ ≥ x

}
≤


e−cnx ,
e−cn(x1x>1+x21x≤1),

e−cn1−2αx2
.
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Empirical risk minimization (2/2)

ERM

θ̂ = arg min
θ∈Θ

Rn(θ).

Say Card(Θ) = N is finite,

P
{
R(θ̂) ≥ Rn(θ̂) + x

}
≤


Ne−cnx ,
Ne−cn(x1x>1+x21x≤1),

Ne−cn1−2αx2
.
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Application to SGLD (1/2)

L is m-strongly convex, M-Lipschitz and ∇L is `-Lipschitz.

SGLD - α ∈ (0, 1), β < α, γ > 0, η ≥ 0

Xn = ΠC
[
Xn−1 −

γ

nα
∇̂nL(Xn−1) +

η

nβ
εn

]
, X̄n =

1
n

n∑
t=1

Xt .

For some cp,d = cp,d(`,m,M),

P
{∥∥∥X̄n − E(X̄n)

∥∥∥
p
≥ x

}
≤ e−cp,dn(x1x>1+x21x≤1).
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Application to SGLD (2/2)

Theorem - Moulines and Bach 2011

E‖X̄n − x∗‖22 ≤
C0

n
.

Moulines, E. and Bach, F. (2011). Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. NIPS.

Combine with our inequality

P

∥∥∥X̄n − x∗
∥∥∥

2
≤

√
C0 + 1

c2,d
log
(

1
δ

)
n

 ≥ 1− δ.
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