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Abstract

We present a general PAC-Bayes theorem
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Introduction PAC-Bayes bounds

Finding the best classifier

Objective of PAC-Bayes bounds

@ empirical risk

@ generalization risk
R(F) = Epxyyr [((F(X), V)]
@ randomized prediction / ensemble / ... : f ~ p,

compare /., [R(f)] and E/._,[r(f)]. |

In this talk : ¢(u,v) € [0, 1].



Introduction PAC-Bayes bounds

Finding the best classifier

A generic PAC-Bayes bound

Let S denote the sample S = [(X;, Yi)]7;.

Let D : [0, 1]> — R be any convex function. For any ¢ > 0,

Ps [vp, D(Er (AL v, [R(F))

KL(p||7) + log -

<e.

EsEyf,. . e"Pr(f),R(F))
n

@ Germain, P., Lacasse, A., Laviolette, F. and Marchand, M. (2009). PAC-Bayesian Learning of
Linear Classifiers. ICML.
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Introduction PAC-Bayes bounds

Finding the best classifier

A more explicit bound

For D(u,v) = 2(u — v)? we obtain :

_ KL(pllm) + 1og 3
n

2| B [R(F)] = Ere [r()] 2

KL(p]r) + log 3
2n

Ervpo[R(F)] < Ervplr(F)] + \/

@ McAllester, D. (2003). PAC-Bayesian Learning of Linear Classifiers. Machine learning. J
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Introduction

PAC-Bayes bounds
Finding the best classifier

A bound in expectation

For any (data-dependent) p,

2EsKL(p|T)

EsErvp[R(f)] < EsEr,[r(f)] + -

Important ! This bound does not give a generalization
certificate.
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Introduction

PAC-Bayes bounds
Finding the best classifier

An easy problem : find the best neural network

You have one data set S that you will use as a test set, and
two classifiers.

perceptron

ry § |

f(R) =015 (£) = 0.01
R(R) =2 R(h) =7
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Introduction PAC-Bayes bounds

Finding the best classifier

PAC-Bayes bound for classifier selection

More generally, M classifiers fi, ..., fy :
. . i 1 M
@ uniform prior : 7 = 5 > .7, ¢

o 7 =argmin; r(f) and p = &;

EsEr [R(F)] < EsEr[r(f)] + %,W
EsR(f) < Bs[min r(F)] + Q'Ln("/’)
EsR(f) < min R(f) + M ’
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Introduction PAC-Bayes bounds

Finding the best classifier

Ask an undergrad student in statistics

Say R(f) < R(f),
EsR(f) = Bs [R(A)1_q + R(B)17g ]
< Es [R(fl) + 1f:f2]
= min R(f) + Ps[r(f) — r(f) < 0]

and r(f) — r(fy) ~ N(AR, %) so

Pslr(h) — () < 0] ~ ® (AR\@ i s

AR\/2rT

AR = R(f2) — R(f1) and v = R(R2)[1 — R(2)] + R(f)[1 — R()] — 2B(f(X) = f2(X) # Y).
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Introduction PAC-Bayes bounds

Finding the best classifier

Which is the largest ?

Which of the following is the largest?

The Moon e # A Kettle
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Introduction PAC-Bayes bounds

Finding the best classifier

Objective of this talk

e PAC-Bayes bounds (basic version) can be suboptimal in
many ways.

@ we will see that in the example above, the uniform prior
leads to the catastrophe.

@ we will discuss “prior improvement” ideas in theory and
practice.
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Introduction PAC-Bayes bounds

Finding the best classifier
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Optimization with respect to the prior

Optimizing the prior Consequences

Optimizing with respect to the prior

In practice, popular choices :

o p = 59’
o p(f) ox exp(—Ar(F))p(F)
° ...
Once p is fixed, why not optimize with respect to 7 7
2EsKL(p||m
EsEr [R(F)] < EsEr[r(F)] + w

EsKL(pllr) = EsKL(p|Esp) + KL(Esp||7)

=Z(p,S) =0 if r=Esp

@ Catoni, O. (2007). PAC-Bayesian supervised learning : the thermodynamics of statistical learning.
IMS lecture notes — monograph series.
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Optimization with respect to the prior

Optimizing the prior Consequences

Mutual information bound

The corresponding bound was re-discovered (independently).

Mutual information bound
2I(p, S)
n

ESEfN/)[R(f)] < ESEpr[r(f)] +

@ Russo, D. and Zou, J. (2019). How much does your data exploration overfit ? controlling bias via

information usage. IEEE Transactions on Information Theory.
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Optimization with respect to the prior

Optimizing the prior G S

PAC-Bayes and MI bounds

Z(p, §) = EsKL(p|[Esp) < EsKL(p||r)

SN

MI : PAC-Bayes :

/2Z(p.S) 2Es KL(p|I7)

Catoni :
optimize w.r.t. 7

Pierre Alquier, RIKEN AIP PAC-Bayes bounds



Optimization with respect to the prior

Optimizing the prior e D

Classifier selection

N e ‘-f-ﬁgﬁ;:-
) |

A O NN ~f”‘*’ AP
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Optimization with respect to the prior

Optimizing the prior e D

Application in the selection problem

Prior 7. (f) = adg + (1 — @) dg,.
Say R(f;) < R(f;). For any
EsR(f) < min R(f) + —2ESKLn(p”7T )

QES [1f:f1 |Og 1 + 1f:f2 |Og 1%}

= mfin R(f) +

n
2 [Iogl + ¢ (”Q/R) Iogf}

QQ

< min R(f) + p

Take

Pierre Alquier, RIKEN AIP PAC-Bayes bounds



Optimization with respect to the prior

Optimizing the prior e D

Application in the selection problem

In the case of M functions fi, ..., fy, put

Then

N : 16 2
EsR(f) < min R(f) + N log (1 + Me™ =2 >

For /A ~ 1./n we recover the \/log(M)/n rate...

@ Alquier, P. (2021). User-friendly introduction to PAC-Bayes bounds. Preprint arXiv. J
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Optimization with respect to the prior

Optimizing the prior e D

Optimization of the prior : more cases

When p(f) oc exp(—Ar(f))p(f), Catoni suggests to use the
(almost optimal) “localized prior”

m_gr(f) oc exp(—=BR(f))p(f).

situation uniform prior | localized prior
dim(®) = d |/ 4log 2 d
: _ d n d

(MA) = margin assumption, includes noiseless classification

@ Alquier, P. (2021). User-friendly introduction to PAC-Bayes bounds. Preprint arXiv. J
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Some ideas

. A i How f: ?
Tight generalization certificates ow tar can we go

Towards tighter generalization certificates

@ define an architecture : {f,,w € W}.
e minimize (in p) a PAC-Bayes bound on E,,,[R(f,)].
@ outcome :

e the posterior p,
e a numerical certificate for E,,.,[R(fy)].

@ Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization bounds for deep

(stochastic) neural networks with many more parameters than training data. UAL

@ Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J. and Szepesvari, C. (2020). Tighter risk

certificates for neural networks. Preprint arXiv.

@ (standard) PAC-Bayes bounds lead to vacuous certificates,

@ propose many improvements to obtain tighter bounds.
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Some ideas

. A i How f: ?
Tight generalization certificates ow tar can we go

Some ideas

Prior on the weights : w ~ N (wg, o).
@ wp chosen randomly = the initialization of the SGD,
@ o = cexp(—j/b), j € N (with union bound).
@ other option : sample splitting. Learn a prior on the first

half, learn p via minimizing a PAC-Bayes bound on the
second half only.

@ etc.
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Some ideas

. A i How f: ?
Tight generalization certificates ow far can we go

Empirical bound with a localized prior

Put
mpr(f) oc exp(=pr(f))p(f).
Fix A € [0,n] and £ € [0, 1). For any € > 0,

Ps <Vﬂv Erp[R(f)]

(- OE ] + KLl ) + (159 '°g?) o1
(1—OA+(1+H%

@ Catoni, O. (2003). A PAC-Bayesian approach to adaptive classification. Preprint LPMA. J
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Some ideas

. A i How f: ?
Tight generalization certificates ow tar can we go

Pros and cons of Catoni's localized bounds

mpr(f) oc exp(=pr(f))p(f).
@ pros : we recover the rates in \/d/n and d/n above...

@ cons :

KL (pllm—¢xr)
= KL(pllp) + BEr,[r(f)] + log Er.., [exp(—Fr(f))]

Should be tried in practice. )
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Some ideas

. A . How far can ?
Tight generalization certificates ow far can we go

Future objective

On the “theoretical bounds” side, most issues with PAC-Bayes
and MI bounds are solved in

@ Griinwald, P., Steinke, T. and Zakynthinou, L. (2021). MAC-Bayes and Conditional Mutual

Information : Fast rate bounds that handle general VC classes. Preprint arXiv.

How much can we improve the numerical certificate via
data-dependent priors 7 Besides Catoni's bound we mentioned
earlier, more recent works :

@ Parrado-Hernandez, E., Ambroladze, A., Shawe-Taylor, J. and Sun., S. (2012). PAC-Bayes
bounds with data dependent priors. JMLR.

@ Dziugaite, G. K. and Roy, D. M. (2018). Data-dependent PAC-Bayes priors via differential
privacy. NeurlPS.
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