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This is the supplement to [Chérief-Abdellatif and Alquier, 2021]. It contains the proofs of the results stated
in Sections 4 and 5 of this paper.

As five equations are numbered in the paper, we start here the numbering of equations at (6), so
that it is clear that for example (3) refers to Equation 3 in the paper.

Appendix A: Proofs of Section 4

Proof of Proposition 4.1. We remind that Py = N(,0%1;) where # € © = R?. When X and Y
are independent, respectively from Py and Py, we have (X —Y) ~ N(0 — ¢',0%1;). Thus,

Vi~ ()

and thus the square of this random variable is a noncentral chi-square random variable:
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It is known that when U ~ x?(d,m) we have E[exp(tU)] = exp(mt/(1 — 2t))/(1 — 2t)%/2. Taking
t = —(20?)/~2, this leads to
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and thus
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From (6) and Proposition 3.5 of the paper, we obtain, with probability at least 1 — ¢,
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that is,
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2 Chérief-Abdellatif € Alquier

Now, use inside the log the inequality (14 1/2)* < e on x = ~?/(40?) to get:

2
. 2 1+ 4/2log (£
||0 - 071,“2 < 7(40'2 +'—Y2) log 1-— 86272(1 €+ \/ﬁm

This proves the first inequality, that is, (2). Simply plug v = 0v/2d to get the second inequality. [

The Gaussian example appears to be a very special case, where it is possible to derive an explicit
formula for the MMD distance. In most models, this is not possible. However, in many models, we
observed that it is actually possible to provide an explicit formula for the L? distance, of the form
160—0'||? = F(|[pg—per||32), where Py has a density pg € L? with respect to the Lebesgue measure and
F' is a nondecreasing function. It is then tempting to use the connection between the MMD distance
and the L? distance mentioned in Remark 3.2 of the paper and in [Sriperumbudur et al., 2010|. The
scheme of the proof is as follows:

16— 60l1* = F (Ips —po,llis) < F (DR(Py o) <, F(bound)
? Theorem 3.1

Theorem 3.2
Proposition 3.5

which means that in such models, the only new step to get a rate of convergence on 0 is to check
the condition
Ipe — pe||7> < cDi(Po, Por) (7)

for some ¢ > 0. Finally, in any case where k,(z,2') = K(||z — 2’||/7), let u denote the Fourier
transform of K:

u(t) = FIK](t) = / K (2) exp(—2im (1, ))da.

Note that for the Gaussian kernel in R?, K (u) = exp(—||ul|?), u(t) = 7%2 exp(—||t||?/4). We remind
a few properties of the Fourier transform. First,

FIK (/) = v FIK](vt) = v (). (8)

Let x denote the convolution product:

p*amzi/fowmow

and we remind the classical result
Flp*q] = Flp|Flql. (9)
Finally, we remind that

/mm%&m:/fmmfwww. (10)

Then, we have:
DR, (P ) = [ [ K (1 = gl lp(@) — por@)po(s) — por(9)}dady
= / [K(-/7) * (P — por)](y)[Po(y) — per (y)|dy, by definition of *
= / [K(-/7) * (pe — o)) (¥)[pe(y) — per (v)]dy, (densities are real-valued)

=/ﬂwaﬂm—mwwﬂﬁfﬁWMtw0®
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Supplement 3
= [ FU /I Fipo = oo 0F o~ paT @k, by (9)
= [0 Flpa — po 0 . by (5).
So, an alternative way to check (7) is to check that:
o = porls < [ () |Flpa — o)
Proof of Proposition 4.2. We have

2

S 12 = = (1-
IR R S N C= AN

<p97p9'>L2

We now use the above remarks and check (7). Note that
Flpe — per](t) = [exp(—itl) — exp(—itd)] exp(—|t])
and so

DF, (Po, Fg) 7 [ yu(yt) |[exp(—ith) — exp(—it6')] exp(—|¢)|*
lpo — P13 1- W

_ 7 [ anyt) [lexp(ith) — exp(itd")] exp(~t2 — |
> e

(9_43/)2 +1

thanks to |z| < 22 + 1. Identify the Fourier transform of the Gaussian density on the numerator to
get

D2 (P, Pp) 2 [1 —exp( L= i”) )}

po —Dyl2.

o [1 — exp ( lo—¢" “2)]

e><p2\/§(1—,1 )
( ) QL£J3+{

when v = 2. For z > 0 we prove easily that

1 —exp(—z/2)

SO o ,
Dk,y(P%PG) ™

1
lpo —Pyll7: = V2exp(2) ~ 4

Now, in the adversarial contamination case,

=T
1 = 7llpg — pa, |
1
<4|1-
=< [ 1—47rDi7(P9~,P90)

(0, —6p)> =4 {1 -
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4 Chérief-Abdellatif € Alquier

1
1 1287 (2 4 ZHAlEU/0) )

n

<4|1-

where the last inequality comes from Proposition 3.5. O

Remark A.1. We applied the technique to the translated Cauchy model. Note that it is possible to
apply it to many other translation models. However, in the translated uniform model (not reported
in this paper), it leads to a suboptimal rate of convergence: 1/+/n, while the MLE is is 1/n. But in
the simulations we made, we observed that the MMD works very well in the uniform model — on
the condition that vy is taken very small. We thus wonder whether it is possible, with another proof
technique, to prove that the MMD estimator with v = y(n) — 0 when n — oo reaches the optimal
rate of convergence. This is still an open question.

Proof of Proposition 4.4. We remind that Py is the distribution of (Xg, X;). Then
01 = |E (tox, — 11po,s fox, — upo>Hk‘

_ /k(:r,y)Po:t(d(%y)) 7// k(m,y)PO(dx)PO(dy)‘

- /(/1{“2"”_y'}f(u)du) Po”f(d(“%y))—// (/1{u>|z—y|}> f(“)duPO(d;z:)Po(dy)‘
= /Ooo (/1{u>|ry|}Po:t(d(w7y)) —//1{@”%1,”} Po(dx)Po(dy)> F(u)du

For any partition (4;);cr of R? denote I(u) = {i € I : (v,y) € A? = ||z — y|| < u}. Then

D 14 (@)14,(y) < Lgamy)<u)
i€l (u)

and moreover 1yj,_,|<u} is the supremum of this sum over all possible measurable partitions, that
is, for any € > 0, we can find a partition (A;);er such that

L{jjz—y<uy —€ < Z 14, ()14, (¥) < Lfje—yl<u}-
i€l (u)
So,

or < /0°° Z

[PO:t(Ai X Al) — PO(A1)2]f(U)d'LL +e€
)

i€l(u
< / Z ’PO:t(Ai X Az) — PO(A1)2‘ f(u)du +e
0 ier(u)
= / Z | Po:e(As x A;) — PO(Ai)2’ f(u)du + ¢
0 er

< /Oo 26 f(w)du + ¢ =206, + ¢.

0
O

Proof of Proposition 4.5. We start by a few preliminary remarks on (X;). First, note that, for
any ¢ and t,

Xopr = eope + Acpyimr + -+ A ep 1 +A'X,

=:Bj
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Supplement 5

where B} is independent of X,. Let P} denote the distribution of B} (it does not depend on ¢ because
of the stationarity).
Also, note that,
X1 =AXg+¢e

and thus
1 X1l < Al Xoll + [lex]l- (11)

Taking the expectation of (11), and using the stationarity, gives
E(1Xo]) = E(1X1]) < [[AIE( Xol)) +E(llex )

which leads to IE(H ||) (H H)
d €1 D) €0
E(HXOH) < 1— 1—lall
|a| || ”

In the same way, if ||e:|| < ¢ almost surely for any ¢, taking the supremum of (11) and using the

stationarity gives, almost surely,
c

1—la|”

We are now ready to start the derivation of the upper bound for g;. We have

[Xoll <

o= [ #eaPua(ate. ) - [ ko) P Pan)
- ‘ / / k(z, Alz + b)P°(dz) P} (db) — / / / k(xz, A'z" + b) PO (da) P (da’) Py (db)
g// |k(z, Az + b) — k(z, A'2’ + b)| P°(dz)P°(da’) P{(db)
< / / / L|(A'z +b) — (A'2’ 4 b)| P°(dz)P°(da’) P} (db)
_ //L||A||t @ — 2| PO(de) P°(da)

< / 2L Al ||]| P°(dx)

= 2L||A|"E(]| X))
< 2LIAI"E(]| Xoll)
- 14

Let us now check Assumption 3.1. In order to do so, fix £ € {1,...,n — 1} and a function
g: Hf; — R such that

‘
l9(ar, - ar) = g(br, ... bo)| <Y llai = billu,- (12)
i=1
As we know that ||e¢]| < ¢ a.s, we also have || X;|| < ¢/(1 — ||A]]). Fix (21,...,2z¢) with |zy|| <

c/(1—||A]]). We have

[Blg(tnn, oot X =01,y Xe = 2] = Elgptnn, ot
|

|
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by (12)

n—_{—1
<E Z HM[sAingrBé - MéA’iXZ+B;} My

i=1

n—~—1
—-F l Z \/k(Aixg + Bi, Aixy + BY) + k(Ai X, + Bi, AiX, + Bl) — 2k(Alzy + Bi, AiX, + B})| .
i=1

We remind the assumption that k(z,y) = F(|z — y|) where F' is L-Lipschitz. So, in particular:
k(A'zy+ B, Alzy + B}) — k(A' X, + B}, A'zy + B}) < L|| A||"||z¢ — X
and in the same way,

k(A'X, + B}, A'X, + B}) — k(A" X, + B}, A'zy + B}) < Lla||*||z¢e — X,

so:
n—~

‘E[g(u(;XHl eetae X1 = 20, Xe = 2] Elg(us, - ,mxn)]‘ <E [Z V2L AT e — X4]| -
i=1

We now use || X¢|| < ¢/(1—||4]|) a.s to get:

n—~—1 i n—~—~—1
2Lc|| A=
‘E[Q(MX[,H e lay )X =@, X = xg]—E[g(MXHl e 7Mxn)}‘ < Z 1—7||A|| = Z Vi
i=1 i=1
This ends the proof. O

Appendix B: Proofs of Section 5

Proof of Proposition 5.1. Note that we can rewrite
crt(0) = [ k2@t @z ~ 23 [ b Xopotaiptan).
i=1
The assumption of the proposition ensure that we can interchange the V and [[ symbols, and so
VoCut(0) = [ ko2 Volpulalpatep(@u@s’) 2 3 [ ke, X0 Volpatelutar)
i=1
=2 [ [ bw. o pa(a)pole’) Valog po(o)ln(dop(as') - iz [ e X altog palalpn(hutaz)

=2Ex x'~p, {k(X, X")Vo[log po(X)]} — % > Exp, {k(X;i, X)Vp[log po(X)]}

i=1

= 2EX,X’~P9 { [I{Z(X7 X,) — ;Zk(Xz;X)] V@[logpg(X)]} .

i=1

This ends the proof. O

Proof of Proposition 5.2. The assumption that © is bounded with radius D ensures that (2.17)
in [Nemirovski et al., 2009] is satisfied, and the assumption on the expectation of the norm of the
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Supplement 7

gradient ensures that (2.5) in [Nemirovski et al., 2009] is also satisfied. Thus, (2.21) is also satisfied,
ant that is exactly the statement of (3) in Proposition 5.2. Then, we have:

B [Dy (Pym, P°)] < Bk (Pyerr, B ) + D (P, P)

= /D2 (Pyerr, Pu) + D (P, P°)

< \/Di (Pén,f?n) + % + Dy (Pn,PO>

thanks to (3) in the proposition. We upper bound the second term thanks to Lemma 7.1 of the

paper:
n
Dy, (Pn7po> </ 14220 e
n
For the first term, we use:

.\ DM . DM
DQ(PA,P,L)+—<]D) (PA,Pn)+ =
V/ k On x/fg__ k On Vﬁf
. . 11257 o [DM
< inf D (P,Pn) 24/ t=1
e AN n \UT

thanks to Theorem 3.1 of the paper. Putting everything together leads to

. ~ 1+ 22717 Ot DM
E []D) (PA ,PO)} < infD (P ,P,,L) \/ t=1
kA\Tem < inf Dy { Fo +3 - + T

which ends the proof. O
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