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1. COMPUTATION OF THE ESTIMATORS 10

1.1. Gradient of the loss
PROPOSITION S1. Assume that each Pλ has a density pλ with respect to a measure µ such

that λ 7→ pλ is differentiable, and that θ 7→ g(θ, x) is differentiable for any x ∈ X .

1. Assume that there is a function b̂ : Y2 → R such that∫
Y

∫
Y
b̂(y, y′)µ(dy)µ(dy′) <∞

and such that, for all (θ, x, x′, y, y′),∣∣k((x, y), (x′, y′))∇θpg(θ,x)(y)pg(θ′,x′)(y
′)
∣∣ ≤ b̂(y, y′).

Then, for all (θ, x, x′, y) we have

∇θ ˆ̀(θ, x, x′, y) 15

= 2EY∼Pg(θ,x), Y ′∼Pg(θ,x′)

[(
k
(
(x, Y ), (x′, Y ′)

)
− k
(
(x, Y ), (x′, y)

))
∇θ log pg(θ,x)(Y )

]
.

2. Assume that there exists a function b̃ : Y2 → R such that∫
Y

∫
Y
b̃(y, y′)µ(dy)µ(dy′) <∞

and such that, for all (θ, x, y, y′),∣∣k(y, y′)∇θ[pg(θ,x)(y)pg(θ′,x)(y
′)]
∣∣ ≤ b̃(y, y′).

Then, for all (θ, x, y) we have

∇θ ˜̀(θ, x, y) = 2E
Y,Y ′

iid∼Pg(θ,x)

[(
kY(Y, Y ′)− kY(Y, y)

)
∇θ log pg(θ,x)(Y )

]
.

Remark S1. We need more assumption to ensure stability and convergence of the stochastic
gradient algorithm. See for example Proposition 5.2 in Chérief-Abdellatif and Alquier (2022)
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(and the references therein), where the authors require the existence of the variance of

L̂(θ, x, x′.U, U ′, y) := 2
(
k
(
(x, Y ), (x′, Y ′)

)
− k
(
(x, Y ), (x′, y)

))
∇θ log pg(θ,x)(Y )

when U ∼ Pg(θ,x) and U ′ ∼ Pg(θ,x′). However, under Assumption ??, it boils down to the cor-
responding assumption on ∇θ log pg(θ,x)(U). For example, if there is v > 0 such that for any
(x, θ), EU∼Pg(θ,x) [‖∇θ log pg(θ,x)(U)‖2] ≤ v, then

Var(L̂(θ, x, x′.U, U ′, y)) ≤ 16v, ∀(θ, x, x′, y).

Proof. We start by the proof of point 2. By definition,

˜̀(θ,Xi, Yi) = EY∼Pg(θ,Xi),Y ′∼Pg(θ,Xi)
[
kY(Y, Y ′)− 2kY(Y, Yi)

]
=

∫∫ [
kY(y, y′)− 2kY(y, Yi)

]
pg(θ,Xi)(y)pg(θ,Xi)(y

′)µ(dy)µ(dy′)

=

∫∫
kY(y, y′)pg(θ,Xi)(y)pg(θ,Xi)(y

′)µ(dy)µ(dy′)− 2

∫
kY(y, Yi)pg(θ,Xi)(y)µ(dy),20

so that

∇θ ˜̀(θ,Xi, Yi) = ∇θ
∫∫

kY(y, y′)pg(θ,Xi)(y)pg(θ,Xi)(y
′)µ(dy)µ(dy′)

−∇θ
∫
kY(y, Yi)pg(θ,Xi)(y)µ(dy)

=

∫∫
kY(y, y′)∇θ

[
pg(θ,Xi)(y)pg(θ,Xi)(y

′)
]
µ(dy)µ(dy′)

− 2

∫
kY(y, Yi)∇θ

[
pg(θ,Xi)(y)

]
µ(dy) (S1)25

where the inversion of
∫

and∇ is jusfified thanks to the existence of the function b̃. Remark that

∇θ
[
pg(θ,Xi)(y)

]
= ∇θ

[
log pg(θ,Xi)(y)

]
pg(θ,Xi)

and that

∇θ
[
pg(θ,Xi)(y)pg(θ,Xi)(y

′)
]

= ∇θ
[
log pg(θ,Xi)(y)

]
pg(θ,Xi)(y)pg(θ,Xi)(y

′) +∇θ
[
log pg(θ,Xi)(y

′)
]
pg(θ,Xi)(y)pg(θ,Xi)(y

′).

Plugging this into (S1) gives:30

∇θ ˜̀(θ,Xi, Yi) =

∫∫
kY(y, y′)∇θ

[
log pg(θ,Xi)(y)

]
pg(θ,Xi)(y)pg(θ,Xi)(y

′)µ(dy)µ(dy′)

+

∫∫
kY(y, y′)∇θ

[
log pg(θ,Xi)(y

′)
]
pg(θ,Xi)(y)pg(θ,Xi)(y

′)µ(dy)µ(dy′)

− 2

∫
kY(y, Yi)∇θ

[
log pg(θ,Xi)(y)

]
pg(θ,Xi)µ(dy)

= 2

∫∫
kY(y, y′)∇θ

[
log pg(θ,Xi)(y)

]
pg(θ,Xi)(y)pg(θ,Xi)(y)µ(dy)µ(dy′)

− 2
n∑
i=1

∫
kY(y, Yi)∇θ

[
log pg(θ,Xi)(y)

]
pg(θ,Xi)µ(dy)35
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by symmetry, and thus,

∇θ ˜̀(θ,Xi, Yi) =
2

n

n∑
i=1

EY∼Pg(θ,Xi),Y ′∼Pg(θ,Xi)

{[
kY(Y, Y ′)− kY(Y, Yi)

]
∇θ
[
log pg(θ,Xi)(Y )

]}
.

The proof of point 1, from the expression in (??), is exactly similar. �

1.2. A closer look at the computation of θ̂n
Let k = kγ ⊗ kY with kγ as in Section ?? and let L(θ, x, x′, y) be a random variable such that

E[L(θ, x, x′, y)] = ∇Θ`(θ, x, x
′, y), with `(θ, x, x′, y) as defined in Section ??. Then, given n

observations dn := {(xi, yi)}ni=1 in Z , the random variable

Hn

(
γ, θ, dn

)
:= 2

n−1∑
i=1

n∑
j=i+1

kγ(xi, xj)L(θ, xi, xj , yj)

is such that E[Hn

(
γ, θ, dn

)
] = ∇θhn(γ, θ, dn), with hn(γ, θ, dn) as defined in (??).

Next, for an integer M1 ∈ {1, . . . , (n− 1)n/2− 1} we let

SM1 ⊂ S := {(i, j) : 1 ≤ i < j ≤ n}

be such that the set {kγ(xi, xj)}(i,j)∈SM1
contains the M1 largest elements of the set

{kγ(xi, xj)}(i,j)∈S , and for an integer M2 ∈ N such that M1 +M2 ≤ (n− 1)n/2 we let 40

{(Ii, Ji)}M2
i=1 be a simple random sample obtained without replacement from the set S \ SM1 .

Then, the random variable

H(M1,M2)
n (γ, θ, dn) := 2

∑
(i,j)∈SM1

kγ(xi, xj)L(θ, xi, xj , yj)

+
(n− 1)n− 2M1

M2

M2∑
m=1

kγ(xIm , xJm)L(θ, xIm , xJm , yJm)

is such that E[H
(M1,M2)
n (γ, θ, dn)] = hn(γ, θ, dn), and thus 45

E
[ N∑
i=1

L(θ, xi, yi) +H(M1,M2)
n (γ, θ, dn)

]
= ∇θ

n∑
i,j=1

ˆ̀(θ,Xi, Xj , Yj). (S2)

This approach for computing an unbiased estimate of ∇θ
∑n

i,j=1
ˆ̀(θ,Xi, Xj , Yj) involves

the construction of the sets S and SM1 , which requires O(n2) operations. However, once
these two sets are obtained, obtaining a realization of Gn(θ, dn) :=

∑N
i=1 L(θ, xi, yi) +

H
(M1,M2)
n (γ, θ, dn) for a given θ can be done in only O(n+M1 +M2 log(M2)) operations 50

using e.g. the simple random sampling without replacement method proposed by Gupta and
Bhattacharjee (1984).

For this procedure to work well in practice the parameters M1 and M2 must be such that
the variance of Gn(θ, dn) is small. When a small value for γ is chosen it is often true that
kγ(xi, xj) ≈ 0 for most pairs (i, j) ∈ S. When this happens, taking M1 = O(n) and M2 such 55

that M2 log(M2) = O(n) allows to efficiently compute θ̂n using a stochastic gradient algorithm
whose cost per iteration is linear in the sample size n. However, the memory requirement the
approach we just described is O(n2), which limits is applicability to moderate values of n (to n
equals to a few thousands, say).
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2. PROOF OF LEMMA ??60

2.1. Preliminaries
We first recall the following result (see Da Prato and Zabczyk, 2014, Proposition 1.6):

LEMMA S1. Let A and B be two Hilbert spaces, T : A → B be a bounded linear operator
and Z be a random variable taking values in A and such that E

[
‖Z‖A

]
<∞. Then E[T (Z)] =

T (E[Z]).65

We recall that, under Assumption ??-??, for any probability distribution P ∈ P(Z) the mean
embedding µ(P ) = EZ∼P [k(Z, ·)] of P is well defined inH, and that µ(P ) has the key property
to be such that

< f, µ(P ) >H=< f,EZ∼P [k(Z, ·)] >H= EZ∼P
[
< f, k(Z, ·) >H

]
= EZ∼P [f(Z)], ∀f ∈ H

where the second equality holds by Lemma S2, noting that for all f ∈ H the mapping g 7→<70

f, g >H is a bounded linear operator onH while, under Assumption ??, EZ∼P [‖k(Z, ·)‖H] ≤ 1.
Recall also that the boundedness of kX and kY (Assumption ??) implies that CP and CPX

exist, are unique, and that they are bounded, linear operators (see Fukumizu et al., 2004, Section
3).

We then have the following result (also proved in the proof of Corollary 3 in Fukumizu et al.,75

2004 as well as in Klebanov et al., 2020, Theorem 4.1).

LEMMA S2. Assume that Assumption ??-?? and condition (??) hold. Then, range(C∗P ) ⊆
range(CPX ).

Proof. Let g ∈ HY and f ∈ HX . Then,

< C∗P g, f >HX =< g, CP f >HY80

= E(X,Y )∼P
[
g(Y )f(X)

]
= EX∼PX

[
E
[
g(Y )|X]f(X)

]
=< EY∼PY |· [g(Y )], CPXf >HX
=< CPXEY∼PY |· [g(Y )], f >HX

where the fourth equality holds under ?? and the last one uses the fact that CPX is self-adjoint.
Since g ∈ HY and f ∈ HX are arbitrary, it follows that

C∗P g = CPXEY∼PY |· [g(Y )], ∀g ∈ HY

and the proof of the lemma is complete.85

2.2. Proof of the lemma
Proof. Let I : HH → HH be the identity operator on HX and PKer(CPX ) : HH → HH be

the orthogonal projection on Ker(CPX ). Recall that PKer(CPX ) is a linear operator such that

‖PKer(CPX )‖o = 1. Therefore, the linear operator C†PXCPX = I − PKer(CPX ) is bounded. In ad-

dition, by Lemma S2, range(C∗P ) ⊆ range(CPX ) and therefore C†PXC
∗
P : HY → HX is a bounded90

linear operator (Arias and Gonzalez, 2009, Theorem 2.3). Hence, recalling that if A : H1 → H2

is a bounded linear operator between two Hilbert spaces then ‖A∗‖H2 = ‖A‖H1 , it follows that
(C†PXC

∗
P )∗ : HX → HY is a bounded linear operator.
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To proceed further let g ∈ HY and f ∈ HX . Then,

< f, CPXEY∼PY |· [g(Y )] >HX = EX∼PX
[
f(X)E[g(Y )|X]

]
= E(X,Y )∼PX

[
g(Y )f(X)

]
=< g, CP f >HY
=< C∗P g, f >HX

(S3)

while, on the other hand, recalling that f ′ = CPXC
†
PX
f ′ for all f ′ ∈ range(CPX ), and recalling 95

that range(C∗P ) ⊆ range(CPX ) by Lemma S2,

< f, CPXC
†
PX
C∗P g >HX =< f, C∗P g >HX . (S4)

Hence, by (S3)-(S4), it follows that

< f, CPX
(
EY∼PY |· [g(Y )]− C†PXC

∗
P g
)
>HX= 0

and thus

EX∼PX
[
f(X)

(
EY∼PY |· [g(Y )]− C†PXC

∗
P g
)
(X)

]
=< f, CPX

(
EY∼PY |· [g(Y )]− C†PXC

∗
P g
)
>HX 100

= 0.

Consequently, since f ∈ HX is arbitrary, it follows that, under the assumptions of the lemma,

EY∼PY |· [g(Y )] = C†PXC
∗
P g (S5)

Remark now that for x ∈ X and y ∈ Y we have

C†PXC
∗
PkY(y, ·)(x) =< C†PXC

∗
PkY(y, ·), kX (x, ·) >HX

=< kY(y, ·), (C†PXC
∗
P )∗kX (X, ·) >HY

=
(
C†PXC

∗
P

)∗
kX (x, ·)(y)

(S6)

where the first equality uses the reproducing property of kX and the third equality the reproducing 105

property of kY .
Let y ∈ Y and x ∈ X . Then, using (S5) with g = kY(y, ·) and (S6), we have

µ(PY |x)(y) = EY∼PY |x
[
kY(y, Y )

]
= C†PXC

∗
PkY(y, ·)(x)

=
(
C†PXC

∗
P

)∗
kX (x, ·)(y) 110

and the proof is complete. �

3. PROOF OF THEOREM ??
3.1. A preliminary result for proving Theorem ??

LEMMA S3. Assume that |kX | ≤ 1 and let µ(dy) be a σ-finite measure on (Y,SY) and f :
X × Y → R be such that 115

1. f(·, y) ∈ HX for all y ∈ Y ,
2. The function Y 3 y 7→ f(·, y) is Borel measurable,



6 P. ALQUIER AND M. GERBER

3. The set {f(·, y) : y ∈ Y} is separable,
4.
∫
Y ‖f(·, y)‖HXµ(dy) <∞.

Then,
∫
Y f(·, y)µ(dy) ∈ HX .120

Proof. Since the set {f(·, y) : y ∈ Y} is separable and the mapping y 7→ f(·, y) is Borel mea-
surable the function y 7→ f(·, y) is strongly measurable. Therefore, there exist (Cohn, 2013,
Proposition E.2) a sequence

(
{Ei,n}ni=1

)
n≥1

and a sequence
(
{fi,n}ni=1

)
n≥1

such that

1. Ei,n ∈ SY and fi,n ∈ HX for all n ≥ i ≥ 1,
2. limn→0 ‖

∑n
i=1 1Ei,n(y)fi,n − f(y, ·)‖HX = 0 for all y ∈ Y ,125

3. ‖
∑n

i=1 1Ei,n(y)fi,n‖HX ≤ ‖f(y, ·)‖HX for all n ≥ 1 and all y ∈ Y .

For every n ≥ 1 let fn : X × Y → R be defined by

fn(x, y) =

n∑
i=1

1Ei,n(y)fi,n(x), (x, y) ∈ X × Y.

Under the assumptions of the lemma we have
∫
Y ‖f(·, y)‖HXµ(dy) <∞, and thus,∫

Y
‖fn(·, y)‖HXµ(dy) ≤

∫
Y
‖f(·, y)‖HXµ(dy) <∞, ∀n ≥ 1,

showing that, for all n ≥ 1, the simple function y 7→ fn(·, y) is Bochner integrable. Conse-
quently, for all n ≥ 1 the function

f̃n :=

∫
Y
fn(·, y)µ(dy) =

n∑
i=1

(∫
Ei,n

µ(dy)
)
fi,n

is well-defined. Notice that f̃n ∈ HX for all n ≥ 1.
To proceed further remark that

|fn(x, y)| ≤ ‖fn(·, y)‖HX ≤ ‖f(·, y)‖HX , ∀(x, y) ∈ X × Y

where the first inequality holds since |kX | ≤ 1 by assumption while the second inequality hods
by the third aforementioned properties of

(
{Ei,n}ni=1

)
n≥1

and
(
{fi,n}ni=1

)
n≥1

.
By assumption,

∫
Y ‖f(·, y)‖HX dy <∞ and thus, by the dominated converge theorem, and130

using the fact that the convergence in ‖ · ‖HX norm implies the point-wise convergence,

lim
n→∞

f̃n(s) =

∫
Y
f(s, y)dy, ∀s ∈ X . (S7)

Therefore, recalling that f̃n ∈ HX for all n ≥ 1, to complete the proof it remains to show that
the sequence (f̃n)n≥1 is Cauchy w.r.t. the ‖ · ‖HX norm.

To this aim remark that, since∥∥fn(·, y)− f(·, y)
∥∥
HX
≤ 2
∥∥f(·, y)

∥∥
HX

, ∀n ≥ 1

while, by assumption,
∫
Y ‖f(·, y)‖HX dy <∞, the dominated convergence theorem implies that 135

lim
n→∞

∫
Y

∥∥fn(·, y)− f(·, y)
∥∥
HX

dy = 0. (S8)
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On the other hand, for every n > m ≥ 1 we have∥∥f̃n − f̃m∥∥HX =
∥∥∥∫
Y

{
fn(·, y)− fm(·, y)

}
µ(dy)

∥∥∥
HX

≤
∫
Y

∥∥fn(·, y)− fm(·, y)
∥∥
HX

µ(dy)

≤
∫
Y

∥∥fn(·, y)− f(·, y)
∥∥
HX

µ(dy) +

∫
Y

∥∥fm(·, y)− f(·, y)
∥∥
HX

µ(dy)

(S9)

where the first inequality holds by Cohn (2013, Proposition E.5), since a shown above the func-
tion y 7→ fn(·, y) is Bochner integrable. Together, (S8) and (S9) show that the sequence (f̃n)n≥1

is indeed Cauchy w.r.t. the ‖ · ‖HX norm, and the proof of the lemma is complete. � 140

3.2. Proof of Theorem ??
Proof. Let g ∈ HY so that g =

∑∞
i=1 aikY(yi, ·) for a sequence (yi)i≥1 in Y and a sequence

(ai)i≥1 in R. For all n ≥ 1 let gn =
∑n

i=1 aikY(yi, ·) and fn : X × Y → R be defined by
fn(x, y) = gn(y)p(y|x), (x, y) ∈ X × Y . We first show that, for all n ≥ 1, the function fn veri-
fies the assumptions of Lemma S3. 145

By Conditions ?? and ?? of the theorem, it readily follows that fn verifies Conditions 1 and
3 of Lemma S3, for all n ≥ 1. To show that this is also the case for Condition 2 of Lemma
S3 let B

(
HX
)

be the Borel σ-algebra on HX . Let n ≥ 1 and assume first that HX contains
the non-zero constant functions so that the function y 7→ gn(y) is B(HX )-measurable. Then,
since by assumption the function y 7→ p(y|·) is B(HX )-measurable and since the product of two 150

Borel measurable functions is a Borel measurable function, it follows that the function Y 3 y 7→
fn(·, y) is B(HX )-measurable, as required. Assume now that HX does not contain the non-zero
constant functions. Let H̃X be the RKHS on X having kX + 1 as reproducing kernel so that, as
shown above, the function Y 3 y 7→ fn(·, y) is B

(
H̃X
)
-measurable. Consequently,{

y ∈ Y : fn(·|y) ∈ A
}
∈ SY , ∀A ∈ B

(
H̃X
)
. (S10) 155

Recalling that H̃X =
{
f + c, f ∈ HX , c ∈ R

}
and that ‖f‖H̃X = ‖f‖HX for all f ∈ HX

(Paulsen and Raghupathi, 2016, Theorem 5.1), it follows that B(HX ) ⊂ B(H̃X ) which, together
with (S10), implies that{

y ∈ Y : fn(·|y) ∈ A
}
∈ SY , ∀A ∈ B

(
HX
)
.

This shows that the function Y 3 y 7→ fn(·, y) is B(HX )-measurable, and thus, for all n ≥ 1, fn 160

satisfies Condition 2 of Lemma S3.
Lastly, using the fact that |kY | ≤ 1 and Condition ?? of the theorem, for all n ≥ 1 we have∫

Y
‖fn(·, y)‖HXµ(dy) ≤

(
sup
y∈Y
|gn(y)|

) ∫
Y
‖p(y|·)‖HXµ(dy)

≤ ‖gn‖HY
∫
Y
‖p(y|·)‖HXµ(dy)

<∞165

and thus, for all n ≥ 1, fn verifies Condition 4 of Lemma S3, which concludes to show that, for
all n ≥ 1, fn verifies all the assumptions of Lemma S3.

Therefore, by Lemma S3, the function f̃n :=
∫
Y fn(·, y)µ(dy) exists and belongs to HX , for

all n ≥ 1. In addition, for all m > n ≥ 1 we have (see Cohn, 2013, Proposition E.5, for the first



8 P. ALQUIER AND M. GERBER

inequality)170 ∥∥f̃n − f̃m∥∥HX =
∥∥∥∫
Y

(gn − gm)(y)p(y|·)µ(dy)
∥∥∥
HX

≤
∫
Y
|gn(y)− gm(y)| ‖p(y|·)‖HXµ(dy)

≤ sup
y∈Y
|gn(y)− gm(y)|

∫
Y

∥∥p(y|·)∥∥HXµ(dy)

where, since |kY | ≤ 1 by assumption,

lim sup
n→∞

sup
m>n

sup
y∈Y
|gn(y)− gm(y)| ≤ lim sup

n→∞
sup
m>n
‖gn − gm‖HY = 0. (S11)175

Consequently, the sequence (f̃n)n≥1 is Cauchy w.r.t. the ‖ · ‖HX norm and therefore converges
point-wise to a function f̃ ∈ HX . Thus, to complete the proof it remains to show that

lim
n→∞

f̃n(x) = EY∼PY |X=x
[g(Y )], ∀x ∈ X .

Since for every n ≥ 1 and x ∈ X we have∣∣f̃n(x)− EY∼PY |X=x
[g(Y )]

∣∣ ≤ ∫
Y
|gn(y)− g(y)| p(y|x)µ(dy) ≤ sup

y∈Y
|gn(y)− g(y)|,

it follows, by (S11), that limn→∞ supx∈X |f̃n(x)− EY∼PY |X=x
[g(Y )]| = 0, and the proof of the

theorem is complete. �

4. PROOF OF COROLLARY ??180

Corollary ?? is a direct consequence of Lemma ??, Theorem ?? and of the following lemma:

LEMMA S4. Assume that Assumptions ??-?? hold and that there exists a σ-finite measure
µ(dy) on (Y,SY) such that PY |x = p(y|x)µ(dy) for all x ∈ X , where p(·|·) satisfies Assump-
tions ??-?? of Theorem ??. Moreover, assume that there exists a bounded conditional mean
embedding operator CY |X for (PY |x)x∈X . Then, ‖CY |X‖o ≤

∫
Y ‖p(y|·)‖HXµ(dy).185

Proof. Let g ∈ HY and remark that

(C∗Y |Xg)(x) =< C∗Y |Xg, kX (x, ·) >HX=< g, CY |XkX (x, ·) >HY= EY∼PY |X=x
[g(Y )], ∀x ∈ X

where the first equality uses the reproducing property of kX and the third (S19).
Consequently,

‖C∗Y |Xg‖HX =
∥∥∥∫
Y
g(y)p(y|·)dy

∥∥∥
HX

≤
∫
Y
‖g(y)p(y|·)‖HX dy

≤ sup
y∈Y
|g(y)|

∫
Y
‖p(y|·)‖HX dy 190

≤ ‖g‖HY
∫
Y
‖p(y|·)‖HX dy
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where, under the assumptions of the lemma, the first inequality holds by Cohn (2013, Proposition
E.5) and where the last inequality uses the fact that |kY | ≤ 1.

Therefore,

‖CY |X‖o = ‖C∗Y |X‖o ≤
∫
Y
‖p(y|·)‖HX dy

and the proof of the lemma is complete. �

5. A USEFUL COROLLARY OF THEOREM ?? 195

In order to state the next result we let Λd(dx) denote the Lebesgue measure on Rd,As =
{
ã ∈

Nd0 :
∑d

i=1 ãi ≤ s
}

for all s ∈ N0 and |a| =
∑d

i=1 ai for all a ∈ Rd.

COROLLARY S1. Assume that X ⊆ Rd is bounded with Lipschitz boundary and, for some
constants m ∈ N and γ > 0, let kX be the restriction of the Matérn kernel Km

2
,γ on X × X . Let

s = (d+m)/2 if (d+m) is even and s = (d+m+ 1)/2 if (d+m) is odd, and assume that 200

there exists a σ-finite measure µ(dy) on (Y,SY) such that PY |x = p(y|x)µ(dy) for all x ∈ X ,
where p(·|·) satisfies the following conditions:r for all y ∈ Y , the function p(y|·) is s times continuously differentiable on X , with

max
a∈As

sup
(x,y)∈X×Y

∣∣∣ ∂
∑d

i=1
ai

∂xa11 . . . ∂xadd
p(y|x)

∣∣∣ <∞
and with

max
a∈As

∫
Y

[∫
X

{ ∂
∑d

i=1
ai

∂xa11 . . . ∂xadd
p(y|x)

}2
Λd(dx)

] 1
2

µ(dy) <∞, ∀a ∈ As,

r the function y 7→ ∂

∑d

i=1
ai

∂x
a1
1 ...∂x

ad
d

p(y|x) is continuous on Y , for all x ∈ X and a ∈ As.

Assume also that the set Y is separable and that Assumptions ??-?? hold. Then, conditions ??-??
of Theorem ?? hold and thus (??) is satisfied. 205

Proof. Remark first that to prove the result it is enough to consider the case where (m+ d) is
even. Indeed, if (m+ d) is odd then in what follows we can replacer the set X by X̃ = X × R1,r for all y ∈ Y , the function p(y|·) : X → R by the function p̃(y|·) : X̃ → R defined by

p̃(y|(x, v′)) = p(y|x) for all (x, u) ∈ X̃ ,210 r d by d̃ = d+ 1.

Recall that, since (m+ d) is even, the RKHS HX is norm-equivalent to the Sobolev space
W s

2

(
X ) (see e.g. Kanagawa et al., 2018, Example 2.6). In addition, recall that the norm ‖ ·

‖W s
2 (X ) is defined by

‖f‖W s
2 (X ) =

∑
a∈As

(∫
X

∣∣∣∣∣ ∂
∑d

i=1
ai

∂ua11 . . . ∂uadd
f(x)

∣∣∣∣∣
2

Λd(dx)

) 1
2

, f ∈W s
2

(
X)
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and let

Dap(y|x) =
∂
∑d

i=1
ai

∂xa11 . . . ∂xadd
p(y|x), ∀(a, x, y) ∈ As ×X × Y.

To proof the corollary remark first that, under its assumptions, for all y ∈ Y we have
‖p(·|y)‖W s

2 (X ) <∞. Thus, for all y ∈ Y , the function p(y|·) belongs to the Sobolev space
W s

2

(
X
)
, and thus to the RKHS HX . This shows that p(·|·) verifies Condition ?? of Theorem

??.215

In addition, under the assumptions of the corollary we have∫
Y
‖p(y|·)‖W s

2 (X )µ(dy) =
∑
a∈As

∫
Y

{∫
X
Dap(y|x)2Λd(dx)

} 1
2

µ(dy) <∞ (S12)

and thus, since the norm ‖ · ‖HX is equivalent to the norm ‖ · ‖W s
2 (X ), it follows that∫

Y
‖p(y|·)‖HXµ(dy) <∞

showing that p(·|·) verifies Condition ?? of Theorem ??.
To proceed further recall that the image of a separable space by a continuous function is

separable. Hence, since Y is assumed to be separable, to show that Condition ?? of Theorem ??
holds it suffices to show that, for every y′ ∈ Y , the function220

Y 3 y 7→ kY(y′, y)p(y|·) ∈ HX (S13)

is continuous. To this aim, let y′ ∈ Y and (y′i)i≥1 be a sequence in Y such that limi→∞ y
′
i =

y′. Then, since kY is continuous by assumption, to show that the function defined in (S13) is
continuous it is enough to show that

lim sup
i→∞

‖p(y′i|·)− p(y′|·)‖HX = 0. (S14)225

The norm ‖ · ‖HX being norm-equivalent to the norm ‖ · ‖W s
2 (X ), there exists a constant C <∞

such that ‖f‖HX ≤ C‖f‖W s
2 (X ) for all f ∈ HX and thus, for all i ≥ 1, we have

‖p(y′i|·)− p(y′|·)‖2HX ≤ C
2‖p(y′i|·)− p(y′|·)‖2W s

2 (X )

≤ C2
∑
a∈As

∫
X

∣∣Dap(y
′
i|x)−Dap(y

′|x)
∣∣2Λd(dx).

(S15)

By assumption, for all x ∈ X and all a ∈ As, the function y 7→ Dap(y|x) is continuous on Y
while, for all (a, x) ∈ As ×X we have

sup
i≥1

∣∣Dap(y
′
i|x)−Dap(y

′|x)
∣∣2 ≤ 2 sup

(x,y)∈X×Y
|Dap(y|x)| <∞.230

Consequently, since X is bounded, (S14) follows from (S15) and the dominated convergence
theorem, and thus p(·|·) satisfies Condition ?? of Theorem ??.

Finally, since as shown above the mapping Y 3 y 7→ p(y|·) is continuous, it follows that this
mapping is Borel measurable and thus p(·|·) satisfies Condition ?? of Theorem ??. Hence, all
the conditions of Theorem ?? and the proof is complete. � 235



Universal Robust Regression via Maximum Mean Discrepancy 11

6. PROOF OF PROPOSITION ??
6.1. Preliminary result

LEMMA S5. Assume that X ⊆ Rd for some integer d and that X is path-wise connected and
such that Λd(X ) > 0. Assume also that kX is continuous on X 2. Then, there exists a distribution
PX ∈ P(X ) such that 240{

f ∈ HX : EX∼PX
[
f(X)h(X)

]
= 0, ∀h ∈ X

}
= {0}. (S16)

Proof. Remark first that since kX is continuous on X 2 any function f ∈ HX is continuous
on X (Paulsen and Raghupathi, 2016, Theorem 2.17). Let PX denote the Nd(0, Id) distribution,
truncated on X if X 6= Rd. Assume that there exists a non-zero function f ∈ HX such that

EX∼PX
[
f(X)h(X)

]
= 0, ∀h ∈ HX .

Then, EX∼PX [f(X)2] = 0 and, since PX admits a strictly positive density pX on X w.r.t. Λd,
we have f(x) = 0 for Λd-almost every x ∈ X . However, as f is assumed to be continuous, and
X is path-wise connected, the function f is zero everywhere. �

6.2. Proof of the proposition 245

Proof:
The fact that k is characteristic follows from Szabó and Sriperumbudur (2018) and the prop-

erties of the Matérn kernel.
Next, remark that, by Lemma S5, under the assumption of the proposition there exists a distri-

bution PX ∈ P(X ) such that the only function f ∈ HX for which we have EX∼PX [f(X)2] = 0 250

is the zero function. In addition, since X is bounded with Lipschitz boundary we can use Corol-
lary S1 to check that there exists a bounded linear conditional mean operator for (PY |x)x∈X .

To this aim, for all x ∈ X we let p(y|x) be the density of PY |x(dy) w.r.t. µ(dy). The σ-
finite measure µ(dy) on Y will be specified below for each example but, for all the considered
examples, for all y ∈ Θ× Y the mapping x 7→ p(y|·) is infinitely many times differentiable.
Consequently, letting s and As be as defined in Corollary S1, we can define

Dap(y|x) =
∂
∑d

i=1
ai

∂xa11 . . . ∂xadd
p(y|x), ∀(a, x, y) ∈ Θ×As ×X × Y.

Then, by Corollary S1, a bounded linear conditional mean operator for (PY |x)x∈X exists if

1. the mapping y 7→ Dap(y|x) is continuous for all (a, x) ∈ As ×X ,
2. the following two conditions hold: 255

max
a∈As

sup
(x,y)∈X×Y

|Dap(y|x)| <∞ (S17)

max
a∈As

∫
Y

[∫
X
{Dap(y|x)}2Λd(dx)

] 1
2

µ(dy) <∞. (S18)

For all the examples considered in the proposition it is trivial to see that the mapping y 7→
Dap(y|x) is continuous for all (a, x) ∈ As ×X . Under the assumptions made on X , Conditions
(S17) and (S18) are easily checked from the definition of p(y|x) given below for each examples260

Example 1: For this example Y = R and we let µ(dy) be the Lebesgue measure on R so that

p(y|x) =

M∑
m=1

wm
1√

2πσ2
m

exp
{
− (y − β>mx)2

2σ2
m

}
, ∀(x, y) ∈ X × Y.
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Example 2: For this example, Y = N0 and we let µ(dy) be the counting measure on N0 so that

p(y|x) =
exp

{
y β>x− exp(β>x)

}
y!

, ∀(x, y) ∈ X × Y.

Example 3: For this example, Y = {0, 1} and we let µ(dy) be the counting measure on {0, 1}
so that

p(y|x) =

(
1

1 + exp(−β>x)

)y ( 1

1 + exp(β>x)

)1−y
, ∀(x, y) ∈ X × Y.

Example 4: For this example, Y = (0,∞) and we let µ(dy) be the Lebesgue measure on R so
that

p(y|x) =
1

Γ(ν)
yν−1 exp(−νβ>x) exp

{
− νy exp(−β>x)

}
, ∀(x, y) ∈ X × Y.

Example 5: For this example, Y = R× {0, 1} and we let

µ(dy) =
(
Λ1(dy1) + δ{0}(dy1))⊗ δ{0}(dy2)

so that

Pλ(dy) = p̌λ(y)µ(dy)

where, denoting by φ(·;µ, σ2) the probability density function of theN1(µ, σ2) distribution w.r.t.
Λ1, for all (x, y) ∈ X × Y we have

p(y|x) = φ
(
y1;β>x, σ2

)
Φ
(
{γ>x+ (ρ/σ)β>x}/

√
1− ρ2

)
1R\{0}(y1)

(
1− 1{0}(y2)

)
+ Φ(−γ>x)1{0}(y1)1{0}(y2).

�265

7. PROOF OF LEMMA ??
Proof. Let CY |X : HX → HY be a bounded linear operator such that

µ(PY |x) = CY |XkX (x, ·), ∀x ∈ X . (S19)

and let C̃PY |X : HX ⊗HX → H be the (unique) linear operator onHX ⊗HX such that

C̃PY |X (f1 ⊗ f2) = f1 ⊗ CY |Xf2, f1 ∈ HX , f2 ∈ HX .

For all f1 ∈ HX and f2 ∈ H?,X we have

‖C̃PY |X (f1 ⊗ f2)‖H = ‖f1 ⊗ CY |Xf2‖H270

= ‖f1‖HX ‖CY |Xf2‖HY
≤ ‖f1‖HX ‖f2‖HX ‖CY |X‖o
= ‖f1 ⊗ f2‖H‖CY |X‖o

showing that

‖C̃PY |X‖o ≤ ‖CY |X‖o <∞. (S20)

where the last inequality holds by assumption. 275
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Next, remark that for every f ∈ HX the linear operator (f ⊗ ·) : HY → H is such that

‖f ⊗ ·‖o ≤ ‖f‖HX <∞. (S21)

since

‖f ⊗ g‖H = ‖f‖HX ‖g‖HY , ∀f ∈ HX , ∀g ∈ HY .

Let µ̃(PX) = EX∼PX
[
kX (X, ·)⊗ kX (X, ·)] be the embedding of PX ∈ P(X ) inHX ⊗HX

Then, for P ′X ∈ P(X ) and using the shorthand P ′ = P ′XPY |·, we have

µ(P ′) : = E(X,Y )∼P ′
[
kX (X, ·)⊗ kY(Y, ·)] 280

= EX∼P ′X
[
EY∼PY |X

[
kX (X, ·)⊗ kY(Y, ·)

]]
= EX∼P ′X

[
kX (X, ·)⊗ EY∼PY |X

[
kY(Y, ·)

]]
= EX∼P ′X

[
kX (X, ·)⊗ µ(PY |X)

]
= EX′∼P ′X

[
kX (X, ·)⊗ CY |XkX (X, ·)

]
= EX′∼P ′X

[
C̃PY |X

(
kX (X ′, ·)⊗ kX (X ′, ·)

)]
285

= C̃PY |XEX∼P ′X
[
kX (X, ·)⊗ kX (X, ·)

]
= C̃PY |X µ̃(P ′X)

where the interchange between expectation and tensor product between the second and the third
equality is justified by Lemma S1 and by (S21), where the interchanges between expectation and
tensor product between the fifth and the sixth equality is justified by Lemma S1 and by (S20), 290

while the fifth equality holds by (S19).
Similarly, for P ′′X ∈ P(X ) and with P ′′ = P ′XPY |·, we have

µ(P ′′) : = E(X,Y )∼P ′′
[
kX (X, ·)⊗ kY(Y, ·)]C̃PY |X µ̃(P ′′X)

and thus,

Dk(P ′, P ′′) = ‖µ(P ′)− µ(P ′′)‖H

=
∥∥∥C̃PY |X(µ̃(P ′X)− µ̃(P ′′X)

)∥∥∥
H

≤ ‖C̃PY |X‖o
∥∥µ̃(P ′X)− µ̃(P ′′X)

∥∥
HX⊗HX

≤ ‖CY |X‖o Dk2X (P ′X , P
′′
X)

(S22)

where the last inequality holds by (S20). The proof is complete.295

8. PROOF OF LEMMA ??
8.1. Preliminary results

The following lemma is adapted from Lemma 5 in Chérief-Abdellatif and Alquier (2020).
While the proof is quite similar, the statement is more general.

LEMMA S6. Let S be a set (equipped with a σ-algebra). Let K be any symmetric func-
tion S2 → [−1, 1] that can be written K(s, s′) = 〈ϕ(s), ϕ(s′)〉H for some Hilbert space H
and some function ϕ (note that we do not assume that K is a characteristic kernel). Let
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S1, . . . , Sn be independent random variables on S with respective distributions Q1, . . . , Qn.
Define Q̄ = (1/n)

∑n
i=1Qi and Q̂ = (1/n)

∑n
i=1 δSi . We define, for any Q and Q′ probability

distributions on S,

D2
K(Q,Q′) = ES∼Q,S′∼Q[K(Z,Z ′)]− 2ES∼Q,S′∼Q′ [K(Z,Z ′)] + ES∼Q′,S′∼Q′ [K(Z,Z ′)]

(which is indeed a metric if K is a characteristic kernel). We have:

E
[
DK(Q̄, Q̂)

]
≤ 1√

n
and E

[
D2
K(Q̄, Q̂)

]
≤ 1

n
.

Proof. Jensen’s inequality gives E[DK(Q̄, Q̂)] ≤
√
E[D2

K(Q̄, Q̂)]. Put mi = ES∼Qi [ϕ(S)],300

then

E
[
D2
K(Q̄, Q̂)

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

[ϕ(Si)−mi]

∥∥∥∥∥
2

H


=

1

n2

n∑
i=1

E
[
‖ϕ(Si)−mi‖2H

]
+

1

n(n− 1)

∑
i 6=j

E
[
〈ϕ(Si)−mi, ϕ(Sj)−mj〉H

]
=

1

n2

n∑
i=1

(
E
[
‖ϕ(Si)‖2H

]
− ‖mi‖2H

)
+ 0

≤ 1

n2

n∑
i=1

E
[
‖ϕ(Si)‖2H

]
=

1

n2

n∑
i=1

K(Si, Si) ≤
1

n
.305

Our proof strategy to study θ̂n(Dn) actually relies on the fact that despite contamination, the
performance of θ̂n(Dn) remains close to the one of θ̂n(Dn). The following lemma will help to
formalize this claim.

LEMMA S7. Let P̂n,0 = 1
n

∑n
i=1 δ(X0

i ,Y
0
i ) be the non-contaminated empirical distribution

and P̂n,0θ = 1
n

∑n
i=1 δX0

i
Pg(θ,X0

i ) be the uncontaminated counterpart of P̂nθ . Then, for any prob- 310

ability distribution Q on X × Y , we have

∣∣∣Dk (P̂n,0, Q)− Dk
(
P̂n, Q

)∣∣∣ < 2ε (S23)

and ∣∣∣Dk (P̂n,0θ , Q
)
− Dk

(
P̂nθ , Q

)∣∣∣ < 2ε. (S24)
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Proof. For the first inequality (S23),∣∣∣Dk (P̂n,0, Q)− Dk
(
P̂n, Q

)∣∣∣ ≤ Dk
(
P̂n,0, P̂n

)
=

∥∥∥∥∥ 1

n

n∑
i=1

[
k((X0

i , Y
0
i ), ·)− k((Xi, Yi), ·)

]∥∥∥∥∥
H

315

≤ 1

n

n∑
i=1

∥∥∥[k((X0
i , Y

0
i ), ·)− k((Xi, Yi), ·)

]∥∥∥
H

=
1

n

∑
i∈I

∥∥∥[k((X0
i , Y

0
i ), ·)− k((Xi, Yi), ·)

]∥∥∥
H

≤ 1

n

∑
i∈I

2 =
2|I|
n

< 2ε.

The proof of (S7) is exactly the same. �

8.2. Proof of the lemma 320

Proof. Thanks to (S23) of Lemma S7 we have, for any fixed θ ∈ Θ,

Dk(P̂nθ̂n , P̄
0
n) ≤ Dk(P̂nθ̂n , P̂

n) + Dk(P̂n, P̄ 0
n) (triangle inequality)

≤ Dk(P̂nθ̂n , P̂
n) + Dk(P̂n,0, P̄ 0

n) + 2ε where we used (S23) with Q = P̄ 0
n

≤ Dk(P̂nθ , P̂n) + Dk(P̂n,0, P̄ 0
n) + 2ε (by definition of θ̂n)

≤ Dk(P̂nθ , P̂n,0) + Dk(P̂n,0, P̄ 0
n) + 4ε by (S23) with Q = P̂nθ 325

≤ Dk(P̂nθ , P̄ 0
n) + 2Dk(P̂n,0, P̄ 0

n) + 4ε (triangle inequality). (S25)

Taking the expectation in (S25) gives:

E
[
Dk(P̂nθ̂n , P̄

0
n)
]
≤ 4ε+ Dk(P̂nθ , P̄ 0

n) + 2E
[
Dk(P̂n,0, P̄ 0

n)
]
. (S26)

We can control the expectation in the right-hand side by an application of Lemma S6, where
Si = (X0

i , Y
0
i ) ∼ Qi := δX0

i
P 0
Y |X0

i
that are indeed independent, and where K = k. The lemma330

gives:

E
[
Dk(P̂n, P̄ 0

n)
]
≤ 1√

n
. (S27)

We take the infinimum with respect to θ to obtain:

E
[
Dk(P̂nθ̂n , P̄

0
n)
]
≤ 4ε+ inf

θ∈Θ
Dk(P̂nθ , P̄ 0

n) +
2√
n
. (S28)

In order to prove (??), take any z′i ∈ Z and define

P̂n,0(i) =
1

n

(∑
j 6=i

δ(X0
j ,Y

0
j ) + δz′i

)
.

We note that: ∣∣∣Dk(P̂n,0, P̄ 0
n)− Dk(P̂n,0(i) , P̄

0
n)
∣∣∣ ≤ Dk(P̂n,0, P̂n,0(i) ) ≤ 2

n
.
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This allows to use the McDiarmind’s bounded difference inequality McDiarmid (1989), which335

gives:

P
{
Dk(P̂n, P̄ 0

n)− E
[
Dk(P̂n, P̄ 0

n)
]
≥ t
}
≤ exp

(
−nt

2

2

)
, ∀t > 0. (S29)

Put η = exp(−nt2/2) to get

P

{
Dk(P̂n,0, P̄ 0

n)− E
[
Dk(P̂n,0, P̄ 0

n)
]
≥
√

2 log(1/η)

n

}
≤ η,

which, together with (S26)-(S27), gives the statement of the theorem. �

9. PROOF OF THEOREM ??
9.1. Preliminary result340

LEMMA S8. Let ‖ · ‖ be a semi-norm on Θ. Let M : Θ→ [0, 2] be such that there exists a
unique θ? ∈ Θ verifying infθ∈ΘM(θ) = M(θ?) and such that there exists a neighborhood U of
θ? and a constant µ > 0 for which

M(θ)−M(θ?) ≥ µ‖θ − θ?‖, ∀θ ∈ U.

Let (θ̌n)n≥1 be a sequence of random variables taking values in Θ and such that there exist a345

strictly increasing function h1 : (0,∞)→ (0,∞) with limx→∞ h1(x) =∞, a continuous and
strictly decreasing function h2 : (0, 1)→ (0,∞), and a constant x ≥ 0 such that

P
{
M(θ̌n) < M(θ?) + x+

h2(η)

h1(n)

}
≥ 1− η, ∀η ∈ (0, 1), ∀n ≥ 1. (S30)

Then for any t > 0,

P
{
‖θ̌n − θ?‖ ≥ x/µ+ t

}
≤ 2h−1

2 [((µt) ∧ (α− x)+)h1(n)] ,

and

P
{
‖θ̌n − θ?‖ <

x

µ
+
h2

(η
2

)
µh1(n)

}
≥ 1− η, ∀n ≥ 1, ∀η ∈

[
2h−1

2 ((α− x)+h1(n)), 1
)

where α = infθ∈UcM(θ)−M(θ?) ∈ (0, 2].

Remark S2. It would also be possible to get a result on E[‖θ̌n − θ?‖], but at the price of the
additional assumption that the parameter space Θ is bounded: sup(θ,θ′)∈Θ2 ‖θ − θ′‖Θ <∞. 350

Proof. Note that (S30) is equivalent to

P
{
M(θ̌n)−M(θ?)− x > t

}
≤ h−1

2 (th1(n)), ∀t > 0, ∀n ≥ 1. (S31)

Remind that α = infθ∈UcM(θ)−M(θ?). It is immediate to see that α ≤ 2. Moreover, α > 0,
otherwise, U c being a closed set, there would be a θ′ ∈ U c such that M(θ′)−M(θ?) = 0.
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Now, for any t > 0,

P
{
‖θ̌n − θ?‖ ≥ t+ x/µ

}
355

= P
{
‖θ̌n − θ?‖ ≥ t+ x/µ, θ̌n ∈ U

}
+ P

{
‖θ̌n − θ?‖ ≥ t+ x/µ, θ̌n /∈ U

}
≤ P

{
M(θ̌)−M(θ?) ≥ µt+ x, θ̌n ∈ U

}
+ P

{
θ̌n /∈ U

}
≤ P

{
M(θ̌)−M(θ?)− x ≥ µt

}
+ P

{
M(θ̌)−M(θ?) ≥ α

}
≤ h−1

2 (µth1(n)) + h−1
2 ((α− x)+h1(n))

where we used (S31) for the last inequality. As h−1
2 is strictly decreasing, we obtain: 360

P
{
‖θ̌n − θ?‖ ≥ t+ x/µ

}
≤ 2h−1

2 [((µt) ∧ (α− x)+)h1(n)] . (S32)

Fix η ∈
[
2h−1

2 ((α− x)+h1(n)), 1
)

as in the statement of the lemma, and note that

2h−1
2 [((µt) ∧ (α− x)+)h1(n)] = η ⇔ t =

h2

(η
2

)
µh1(n)

.

Plugging these values in (S32), we obtain:

P
{
‖θ̌n − θ?‖ <

x

µ
+
h2

(η
2

)
µh1(n)

}
≥ 1− η.

9.2. Proof of the theorem
Proof. From Lemma (??), (S30) in Lemma S8 holds with θ? = θ0, x = 4ε, h1(n) =

√
n,

h2(η) = 2 +
√

2 log(1/η) and θ̌n = θ̂n . Apply Lemma S8 to get:

∑
n≥1

P
{
‖θ̌n − θ?‖ ≥ +

4ε

µ
+ t

}
≤ 2

∑
n≥1

exp

[
− [((µt) ∧ (α− x)+)

√
n− 2]

2

2

]
<∞, ∀t > 0

showing that P
(

lim supn→∞ ‖θ̌n − θ?‖ ≤ 4ε/µ
)

= 1. Lemma S8 also states

P
{
‖θ̌n − θ?‖ <

h2

(η
2

)
µh1(n)

}
≥ 1− η, ∀n ≥ 1, ∀η ∈

[
2h−1

2 ((α− x)+h1(n)), 1
)
.

Note that

h2

(η
2

)
µh1(n)

=
1

µ
√
n

(
2 +

√
2 log(2/η)

)
and 2h−1

2 ((α− x)+h1(n)) = 2 exp(−((α− x)+
√
n− 2)2/2). For the sake of simplicity, we

only consider n ≥ 16/(α− x)2
+, in this case, we have (α− x)+

√
n− 2 ≥ (α− x)+

√
n/2 and

thus the result holds in particular for any η ∈ [2 exp(−n(α− x)2
+/8), 1). Finally, remind that

x = 4ε < α/8 so it holds in particular for n ≥ 64/α2 and η ∈ [2 exp(−nα2/32), 1). �365

10. PROOF OF LEMMA ??
10.1. Preliminary result

We start with a result that will be an essential tool in the proof of Lemma ??. Essentially, it
quantifies how well P̂n,0

θ̂n
= (1/n)

∑n
i=1 δX0

i
Pg(θ̂n,X0

i ) approximates P 0. Usually, in regression
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literature, we focus mostly on the estimation of the distribution of Y |X rather than on the esti-370

mation of the distribution of the pair (X,Y ). Still, we believe that this result has in interpretation
on its own, so we state is as a theorem.

THEOREM S1. Under Assumption ?? we have

E
[
Dk(P̂n,0θ̂n

, P 0)
]
≤ 8ε+ inf

θ∈Θ
Dk(Pθ, P 0) +

3√
n

and, for any η ∈ (0, 1),

P
{
Dk(P̂n,0θ̂n

, P 0) ≤ 8ε+ inf
θ∈Θ

Dk(Pθ, P 0) +
3√
n

(
1 +

√
2 log(2/η)

)}
≥ 1− η.

Proof. The proof is quite similar to the proof of Lemma ??, but requires some adaptations, in
particular in the application of Lemma S6.

First,375

Dk(P̂n,0θ̂n
, P 0) ≤ Dk(P̂n,0θ̂n

, P̂n,0) + Dk(P̂n,0, P 0). (S33)

Let us deal with the first term of this upper bound in a first time. Here, we will use both (S23)
and (S24) of Lemma S7. We have:

Dk(P̂n,0θ̂n
, P̂n,0) ≤ Dk

(
P̂n,0
θ̂n
, P̂n

)
+ 2ε ≤ Dk

(
P̂n
θ̂n
, P̂n

)
+ 4ε ≤ Dk

(
P̂n
θ̂n(D0

n)
, P̂n

)
+ 4ε

≤ Dk
(
P̂n,0
θ̂n(D0

n)
, P̂n

)
+ 6ε

≤ Dk
(
P̂n,0
θ̂n(D0

n)
, P̂n,0

)
+ 8ε380

= inf
θ∈Θ

Dk
(
P̂n,0θ , P̂n,0

)
+ 8ε.

where the first inequality uses (S23), the second (S24), the third the definition of θ̂n, the fourth
(S24), the fifth (S23) and the sixth the definition of θ̂n.

Together with (S33), this shows that

Dk(P̂n,0θ̂n
, P 0) ≤ inf

θ∈Θ
Dk
(
P̂n,0θ , P̂n,0

)
+ Dk(P̂n,0, P 0) + 8ε 385

≤ inf
θ∈Θ

Dk
(
P̂n,0θ , P 0

)
+ 2Dk(P̂n,0, P 0) + 8ε

≤ inf
θ∈Θ

[
Dk
(
P̂n,0θ , Pθ

)
+ Dk(Pθ, P 0)

]
+ 2Dk(P̂n,0, P 0) + 8ε (S34)

and so, taking expectations on both sides,

E
[
Dk(P̂n,0θ̂n

, P 0)
]
≤ inf

θ∈Θ

{
E
[
Dk(P̂n,0θ , Pθ)

]
+ Dk(Pθ, P 0)

}
2E
[
Dk(P̂n,0, P 0)

]
+ 8ε. (S35)
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We tackle the term E
[
Dk(P̂n,0θ , Pθ)

]
. Letting Φ denote the function such that

k((x, y), (x′, y′)) = 〈Φ(x, y),Φ(x′, y′)〉H, we have 390

Dk(P̂n,0θ , Pθ) =

√
D2
k(P̂

n,0
θ , Pθ)

=

(
E

(X,Y )∼P̂n,0
θ

,(X′,Y ′)∼P̂n,0
θ

〈
Φ(X,Y ),Φ(X ′, Y ′)

〉
H

− 2E
(X,Y )∼P̂n,0

θ
,(X′,Y ′)∼Pθ

〈
Φ(X,Y ),Φ(X ′, Y ′)

〉
H

+ E(X,Y )∼Pθ,(X′,Y ′)∼Pθ
〈
Φ(X,Y ),Φ(X ′, Y ′)

〉
H

) 1
2

=

(
EX∼ 1

n

∑n

i=1
δ
X0
i
,X′∼ 1

n

∑n

i=1
δ
X0
i

〈
EY∼Pg(θ,X)

[Φ(X,Y )],EY ′∼Pg(θ,X′) [Φ(X ′, Y ′)]
〉
H

395

− 2EX∼ 1
n

∑n

i=1
δ
X0
i
,X′∼P 0

X

〈
EY∼Pg(θ,X)

[Φ(X,Y )],EY ′∼Pg(θ,X′) [Φ(X ′, Y ′)]
〉
H

+ EX∼P 0
X ,X

′∼P 0
X

〈
EY∼Pg(θ,X)

[Φ(X,Y )],EY ′∼Pg(θ,X′) [Φ(X ′, Y ′)]
〉
H

) 1
2

=

√√√√D2
k̄

(
1

n

n∑
i=1

δX0
i
, P 0

X

)
= Dk̄

(
1

n

n∑
i=1

δX0
i
, P 0

X

)

where the function k̄ is given by:

k̄(x, x′) =
〈
EY∼Pg(θ,x) [Φ(x, Y )],EY ′∼Pg(θ,x′) [Φ(x′, Y ′)]

〉
H
.

Note that −1 ≤ k̄ ≤ 1 so we can apply Lemma S6 to Si = X0
i ∼ Qi = P 0

X and K = k̄ to get:

E

[
Dk̄

(
1

n

n∑
i=1

δX0
i
, P 0

X

)]
≤ 1√

n
.

Combining this last result with (S35), and applying Lemma S6 with Si = (X0
i , Y

0
i ) ∼ Qi = P 0

and K = k that gives E[Dk(P̂n,0, P 0)] ≤ 1/
√
n, we finally obtain:400

E
[
Dk(P̂n,0θ̂n

, P 0)
]
≤ inf

θ∈Θ

{
1√
n

+ Dk(Pθ, P 0)

}
+

2√
n

+ 8ε

= inf
θ∈Θ

Dk(Pθ, P 0) +
3√
n

+ 8ε,

that is the first inequality of the theorem.
In order to prove the second inequality let θ0 ∈ argminθ∈Θ Dk(Pθ, P 0). Then (S34) implies

Dk(P̂n,0θ̂n
, P 0)

≤ Dk(P̂n,0θ0
, Pθ0) + Dk(Pθ0 , P

0) + 2Dk(P̂n,0, P 0) + 8ε

= Dk(P̂n,0θ0
, Pθ0) + inf

θ∈Θ
Dk(Pθ, P 0) + 2Dk(P̂n,0, P 0) + 8ε.



20 P. ALQUIER AND M. GERBER

McDiarmid’s bounded difference inequality leads to

P
{
Dk(P̂n,0, P 0)− E

[
Dk(P̂n,0, P 0)

]
≥ t
}
≤ exp

(
−nt

2

2

)
and to

P
{
Dk(P̂n,0, P 0)− E

(
Dk(P̂n,0, P 0)

)
≥ t
}
≤ exp

(
−nt

2

2

)
.

By a union bound, the probability that one of the two events hold is smaller or equal to
2 exp(−nt2/2), which leads to

P
{
Dk(P̂n,0θ̂n

, P 0) ≤ inf
θ∈Θ

Dk(Pθ, P 0) +
3√
n

(
1 +

√
2 log(2/η)

)
+ 8ε

}
≥ 1− η.

This ends the proof.405

10.2. Proof of the lemma
Proof. By Lemma ?? applied to P ′X = P̂n,0X and P ′′X = P 0

X , we have

Dk(P̂nθ̂n , Pθ̂n) ≤ CDk2X (P̂n,0X , P 0
X) (S36)

and thus

E
[
Dk(P̂n,0θ̂n

, Pθ̂n)
]
≤ CE

[
Dk2X (P̂n,0X , P 0

X)
]
.410

Applying Lemma S6 with Zi = Xi ∼ Qi = P 0
X and K = k2

X , we obtain

E
[
Dk(P̂n,0θ̂n

, Pθ̂n)
]
≤ C√

n
. (S37)

Now:

E
[
Dk(Pθ̂n , P

0)
]
≤ E

[
Dk(Pθ̂n , P̂θ̂n)

]
+ E

[
Dk(P̂θ̂n , P

0)
]

≤ C√
n

+

(
inf
θ∈Θ

Dk(Pθ, P 0) + 8ε+
3√
n

)
where we used (S37) to upper bound the first term, and Theorem S1 for the second term. This 415

ends the proof of the bound in expectation.
Let us now prove the inequality in probability. Let η ∈ (0, 1) and use the bounded difference

inequality to get

P
{
Dk2X (P̂n,0X , P 0

X)− E
[
Dk2X (P̂n,0X , P 0

X)
]
≤
√

2 log(2/η)

n

}
≥ 1− η

2

while, by Theorem S1,

P
{
Dk(P̂n,0θ̂n

, P 0) ≤ 8ε+ inf
θ∈Θ

Dk(Pθ, P 0) +
3√
n

(
1 +

√
2 log(4/η)

)}
≤ 1− η

2
.

Together with (S36), and using a union bound, we obtain

P
{
Dk(P̂θ̂n , P

0) ≤ inf
θ∈Θ

Dk(Pθ, P 0) +
3
(
1 +

√
2 log(4/η)

)
+ C

(
1 +

√
2 log(2/η)

)
√
n

}
≥ 1− η. 420
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11. PROOF OF THEOREM ??
Proof. From Lemma ??, (S30) in Lemma S8 holds with h1(n) =

√
n, h2(η) = (C + 3)(1 +√

2 log(4/η)) and θ̌n = θ̂n. Then, the result is proved following the computations done in the
proof of Theorem ??. �

12. PROOF OF PROPOSITION ?? 425

Proof. Let f : Θ→ [0, 4] be defined by

f(θ) =
(
Dk(Pθ, P̃ 0)− Dk(Pθ0 , P̃

0)
)2
, θ ∈ Θ

and let U be an open set containing θ0 such that f is twice continuously differentiable on U . Let
Hθ be the Hessian matrix of f evaluated at θ ∈ U .

Then, using Taylor’s theorem, for every θ ∈ U we have, for some τ ∈ [0, 1]

f(θ) = f(θ0) + (θ − θ0)>∇f(θ0) +
1

2
(θ − θ0)>Hθ0+τ(θ−θ0)(θ − θ0)

= (θ − θ0)>Hθ0+τ(θ−θ0)(θ − θ0) 430

≥ ‖θ − θ0‖2
λmin

(
Hθ0+τ(θ−θ0)

)
2

≥ ‖θ − θ0‖2
infθ∈U,τ∈[0,1] λmin

(
Hθ0+τ(θ−θ0)

)
2

where for every θ ∈ U we denote by λmin(Hθ) the minimum eigenvalue of Hθ. Un-
der the assumptions of the proposition, we can take U sufficiency small so that c :=
infθ∈U,τ∈[0,1] λmin

(
Hθ0+τ(θ−θ0)

)
> 0. Then, 435

Dk(Pθ, P̃ 0)− Dk(Pθ0 , P̃
0) =

√
f(θ) ≥

√
c/2 ‖θ − θ0‖

showing that (??) holds for µ =
√
c/2. �

13. PROOF OF PROPOSITION ??
Proof. For all (θ, x, y) ∈ Θ×X × Y , let

mθ(x, y) = E
Y,Y ′

iid∼Pg(θ,X)

[
kY(Y, Y ′)− 2kY(Y, y)

]
+ EX∼P 0

X

[
E
Y,Y ′

iid∼P 0
Y |X

[
kY(Y, Y ′)

]]
and remark that

E(X,Y )∼P 0 [mθ(X,Y )] = EX∼P 0
X

[
DkY (Pg(θ,X), P

0
Y |X)2

]
, ∀θ ∈ Θ.440

Under the assumptions of the theorem, the mapping θ 7→ mθ(x, y) is continuous on the compact
set Θ and is such that |mθ(x, y)| ≤ 4 for all (θ, x, y) ∈ Θ×X × Y . Then (see e.g Van der Vaart,
2000, page 46)

sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

mθ(Xi, Yi)− EX∼P 0
X

[
DkY (Pg(θ,X), P

0
Y |X)2

]∣∣∣→ 0, in P-probability

and therefore, noting that θ̃n ∈ argminθ∈Θ
1
n

∑n
i=1mθ(Xi, Yi), the result follows by Van der

Vaart (2000, Theorem 5.7). �
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14. PROOF OF THEOREM ??
Proof. Let ε ∈ [0, 1) and, for all x ∈ X , let P̃ 0

Y |x = (1− ε)P 0
Y |x + εQY |x and P̃ 0

X = (1−
ε)P 0

X + εQX where QX denotes the distribution of X under Q.445

Then, for all θ ∈ Θ we have

EX∼P 0
X

[
DkY (Pg(θ,X),P

0
Y |X)2

]
≤ EX∼P 0

X

[(
DkY (Pg(θ,X), P̃

0
Y |X) + DkY (P 0

Y |X , P̃
0
Y |X)

)2]
≤ EX∼P 0

X

[(
DkY (Pg(θ,X), P̃

0
Y |X) + 2ε

)2]
≤ EX∼P 0

X

[(
DkY (Pg(θ,X), P̃

0
Y |X)2

]
+ 8ε+ 4ε2

≤ EX∼P 0
X

[(
DkY (Pg(θ,X), P̃

0
Y |X)2

]
+ 12ε

≤ 1

1− ε
EX∼P̃ 0

X

[(
DkY (Pg(θ,X), P̃

0
Y |X)2

]
+ 12ε

(S38)

where the third inequality the fact uses the that, since |kY | ≤ 1, P(DkY (Pg(θ,X), P
0
Y |X) ≤

2) = 1, the penultimate inequality holds since ε < 1 and the last inequality holds since
EX∼QX

[(
DkY (Pg(θ,X), P̃

0
Y |X)2

]
≥ 0 for all θ ∈ Θ.

Then, applying (S38) with θ = θ̃Q,ε yields450

EX∼P 0
X

[
DkY (Pg(θ̃Q,ε,X), P

0
Y |X)2

]
≤ 1

1− ε
inf
θ∈Θ

EX∼P̃ 0
X

[
DkY (Pg(θ,X), P̃

0
Y |X)2

]
+ 12ε

≤ 1

1− ε
inf
θ∈Θ

EX∼P̃ 0
X

[
DkY (Pg(θ,X), P

0
Y |X)2

]
+

12ε

1− ε
+ 12ε

≤ inf
θ∈Θ

EX∼P 0
X

[
DkY (Pg(θ,X), P

0
Y |X)2

]
+

24ε

1− ε
+

12ε

1− ε
+ 16ε

≤ EX∼P 0
X

[
DkY (Pg(θ̃0,X), P

0
Y |X)2

]
+

52ε

1− ε

(S39)

where the second inequality follows by swapping P̃ 0
Y |X and P 0

Y |X in (S38) and the third one uses
the fact that, since |kY | ≤ 1,

EX∼QX
[
DkY (Pg(θ,X), P

0
Y |X)2

]
≤ 4, ∀θ ∈ Θ.

By assumption, θ̃0 is the unique minimizer of the function θ 7→
EX∼P 0

X

[
DkY (Pg(θ,X), P

0
Y |X)2

]
and therefore (see the proof of Lemma S8)

α = inf
θ∈Uc

(
EX∼P 0

X

[
DkY (Pg(θ,X), P

0
Y |X)2

]
− EX∼P 0

X

[
DkY (Pg(θ̃0,X), P

0
Y |X)2

])
> 0.

Together with (S39), this shows that if

52ε

1− ε
< α⇔ ε <

α

52 + α
455

then

EX∼P 0
X

[
DkY (Pg(θ̃Q,ε,X),P

0
Y |X)2

]
− EX∼P 0

X

[
DkY (Pg(θ̃0,X), P

0
Y |X)2

]
< inf

θ∈Uc

(
EX∼P 0

X

[
DkY (Pg(θ,X), P̃

0)2
]
− EX∼P 0

X

[
DkY (Pg(θ̃0,X), P̃

0)2
])
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implying that θ̃Q,ε ∈ U . Consequently, using again (S39),

52ε

1− ε
≥ EX∼P 0

X

[
DkY (Pg(θ̃Q,ε,X), P

0
Y |X)2

]
− EX∼P 0

X

[
DkY (Pg(θ̃0,X), P

0
Y |X)2

]
≥ µ‖θ̃Q,ε − θ0‖ 460

and the result follows. �
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