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APPENDIX A: ADDITIONAL INTEGRAL PROBABILITY SEMIMETRICS

A.1. Two additional examples of IPS discrepancies. While MMD, Wasserstein-1 and
summary-based distances provide the most notable examples of IPS discrepancies em-
ployed in ABC, two other relevant IPS instances are the total variation (TV) distance and
the Kolmogorov–Smirnov (KS) distance, discussed below.

EXAMPLE A.1. (Total variation distance). Although the total variation distance is not a
common choice within discrepancy-based ABC, it still provides a notable example of IPS,
obtained when F is the class of measurable functions whose sup-norm is bounded by 1; i.e.
F = {f : ||f ||∞ ≤ 1}.

EXAMPLE A.2. (Kolmogorov–Smirnov distance). When Y = R and F = {1(−∞,a]}a∈R,
then DF is the Kolmogorov–Smirnov distance, which can also be written as DF(µ1, µ2) =
supx∈Y |F1(x)− F2(x)|, where F1 and F2 are the cumulative distribution functions associ-
ated with µ1 and µ2, respectively.

A.2. Validity of (III)–(IV) for the TV distance and Kolmogorov–Smirnov distance.
Examples A.3 and A.4 verify the validity of assumptions (III) and (IV) under the TV distance
and the Kolmogorov–Smirnov distance, respectively.

EXAMPLE A.3. (Total variation distance). The TV distance satisfies (III) by definition,
but in general not Assumption (IV), unless the cardinality |Y| of Y is finite. In fact, when
Y = R and µ ∈ P(Y) is continuous, the probability that there exists an index i 6= i′ such
that xi = xi′ is zero. Hence, with probability 1, for any vector ε1:n of Rademacher variables
there always exists a function fε from Y to {0; 1} such that fε(xi) = 1{εi=1}. Therefore,
supf∈F |(1/n)

∑n
i=1 εif(xi)| ≥ (1/n)

∑n
i=11{εi=1}, which implies that the Rademacher

complexity Rµ,n(F) is bounded below by (1/n)
∑n

i=1 P(εi = 1) = 1/2. Nonetheless, as
mentioned above, the TV distance can still satisfy (IV) in specific contexts. For instance,
leveraging the bound in Lemma 5.2 of Massart (2000), when the cardinality |Y| ofY is finite,
there will be replicates in [f(x1), . . . , f(xn)] whenever n > |Y|. Hence, as n→∞, it will

1

https://imstat.org/journals-and-publications/annals-of-statistics/
mailto:sirio.legramanti@unibg.it
mailto:daniele.durante@unibocconi.it
mailto:alquier@essec.edu


2

be impossible to find a function in F which can interpolate any noise vector of Rademacher
variables with [f(x1), . . . , f(xn)], thus ensuring Rn→ 0.

EXAMPLE A.4. (Kolmogorov–Smirnov distance). The KS distance meets (III) by defi-
nition and, similarly to MMD with bounded kernels, also condition (IV) is satisfied without
the need to impose additional constraints on the model µθ or on the data-generating pro-
cess. More specifically, Assumption (IV) follows from the inequality Rµ,n(F) ≤ 2[log(n +
1)/n]1/2 in Chapter 4.3.1 of Wainwright (2019). This is a consequence of the bounds on
Rµ,n(F) when F is a class of b-uniformly bounded functions such that, for some ν ≥ 1, it
holds card{f(x1:n) : f ∈ F} ≤ (n+ 1)ν for any n and x1:n in Yn. When F = {1(−∞,a]}a∈R
each x1:n would divide the real line in at most n+ 1 intervals and every indicator function
within F will take value 1 for all xi ≤ a and zero otherwise, meaning that card{f(x1:n) : f ∈
F} ≤ (n+ 1). Therefore, by applying Equation (4.24) in Wainwright (2019), with b= 1 and
ν = 1, yields Rµ,n(F)≤ 2[log(n+ 1)/n]1/2 for any µ ∈ P(Y), which implies that Assump-
tion (IV) is met. These derivations clarify the usefulness of the available techniques for upper
bounding the Rademacher complexity (e.g., Wainwright, 2019, Chapter 4.3), leveraging, in
this case, the notion of polynomial discrimination and the closely-related VC dimension.

APPENDIX B: CONCENTRATION IN THE SPACE OF PARAMETERS

Theorem 3.3 in the main article is stated for neighborhoods within the space of distribu-
tions. Although such a perspective is in line with the overarching focus of current theory for
discrepancy-based ABC (Jiang, Wu and Wong, 2018; Bernton et al., 2019; Nguyen et al.,
2020; Frazier, 2020; Fujisawa et al., 2021), it shall be emphasized that similar results can be
also derived in the space of parameters. To this end, it suffices to adapt Corollary 1 in Bern-
ton et al. (2019) to our general framework, under the same additional assumptions, which
are adapted below to the whole IPS class.

(V) The minimizer θ∗ of DF(µθ, µ
∗) exists and is well separated, meaning that for any

δ > 0 there is a δ′ > 0 such that infθ∈Θ:d(θ,θ∗)>δDF(µθ, µ
∗)>DF(µθ∗, µ

∗) + δ′;

(VI) The parameters θ are identifiable, and there exist positive constants K > 0, ν > 0 and
an open neighborhood U ⊂Θ of θ∗ such that, for any θ ∈ U , it holds that d(θ, θ∗)≤
K [DF(µθ, µ

∗)− ε∗]ν .

Assumptions (V) and (VI) essentially require that the parameters θ are identifiable, suffi-
ciently well-separated, and that the distance d(·, ·) between parameter values has some rea-
sonable correspondence with the discrepancy DF(·, ·) among the associated distributions.
Although these two assumptions introduce a condition on the model, it shall be emphasized
that (V) and (VI) are not specific to our framework (e.g., Frazier et al., 2018; Bernton et al.,
2019; Frazier, 2020). On the contrary, these identifiability conditions are arguably custom-
ary and minimal requirements in parameter inference. Moreover, these two assumptions
have been checked in Chérief-Abdellatif and Alquier (2022) for MMD and in Bernton et al.
(2019) for Wasserstein distance, which are arguably the two most remarkable examples of
IPS employed in the ABC context. Under (V) and (VI), it is possible to state Corollary B.1.
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COROLLARY B.1. Assume (I)–(IV) along with (V)–(VI), and that DF denotes a discrep-
ancy within the IPS class in Definition 2.1. Moreover, take ε̄n→ 0 as n→∞, with nε̄2

n→∞
and ε̄n/Rn(F)→∞. Then, the ABC posterior with threshold εn = ε∗ + ε̄n satisfies

π(ε∗+ε̄n)
n

({
θ : d(θ, θ∗)>K

[4ε̄n
3

+ 2Rn(F) +
(2b2

n
log

n

ε̄Ln

)1/2]ν})
≤ 2 · 3L

cπn
,

with Py1:n–probability going to 1 as n→∞.

As for Theorem 3.3, also Corollary B.1 holds more generally when replacing both n/ε̄Ln
and cπn with Mn/ε̄

L
n and cπMn, respectively, for any Mn > 1. The proof of Corollary B.1

follows directly from Theorem 3.3 and Assumptions (V)–(VI), thereby allowing to inherit
the discussion after Theorem 3.3, also when the concentration is measured directly within
the parameter space via d(θ, θ∗). For instance, when d(·, ·) is the Euclidean distance and ν =
1, this implies that whenever Rn(F) =O(n−1/2) the contraction rate will be in the order of
O([log(n)/n]1/2), which is the expected rate in parametric models.

APPENDIX C: EXTENSION TO NON-I.I.D. SETTINGS

Although the theoretical results in Sections 2–4 provide an improved understanding of the
limiting properties of discrepancy-based ABC posteriors, the i.i.d. assumption in (I) rules out
important settings which often require ABC. A remarkable case is that of time-dependent
observations (e.g., Fearnhead and Prangle, 2012; Bernton et al., 2019; Nguyen et al., 2020;
Drovandi and Frazier, 2022).

Section C.1 clarifies that the theory derived under i.i.d. assumptions in Section 2–4 can be
naturally extended to these non-i.i.d. settings leveraging results for Rademacher complexity
in β-mixing stochastic processes (Mohri and Rostamizadeh, 2008). Examples C.3–C.4 be-
low show that such a class embraces several processes of direct practical interest. Extensions
beyond this class, albeit relevant, are challenging even when the focus is on proving sim-
pler, non-uniform, concentration results for a single discrepancy. Hence, these extensions are
left for future research, that could be facilitated by the derivation of Rademacher complexity
bounds for general processes beyond the β-mixing ones studied in Mohri and Rostamizadeh
(2008).

C.1. Convergence and concentration beyond i.i.d. settings. Let us assume again that
Y is a metric space endowed with distance ρ. However, unlike the i.i.d. setting considered in
Section 2, we now focus on the situation in which the observed data y1:n = (y1, . . . , yn) ∈ Yn
are dependent and drawn from the joint distribution µ∗(n) ∈ P(Yn), where P(Yn) is the
space of probability measures on Yn. Under this more general framework, the i.i.d. case is
recovered by assuming that µ∗(n) can be expressed as a product, i.e., µ∗(n) =

∏n
i=1µ

∗.
In the following, the above product structure is not imposed. Instead, we only assume that

the marginal of µ∗(n) is constant, and denoted with µ∗. Such an assumption is met whenever
y1:n is extracted from a stationary stochastic process (yt)t∈Z, thus embracing a broader va-
riety of applications of direct interest. Under these settings, a statistical model is defined as
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a collection of distributions in P(Yn), i.e., {µ(n)
θ : θ ∈Θ⊆Rp}, with a constant marginal

denoted by µθ. Notice that these assumptions of constant marginals µ∗ and µθ are made also
in the available concentration theory under non-i.i.d. settings (see e.g., Bernton et al., 2019;
Nguyen et al., 2020) when requiring convergence ofDF(µ̂y1:n, µ

∗) and suitable concentration
inequalities for DF(µ̂z1:n, µθ). As a result, the settings we consider are not more restrictive
than those addressed in discrepancy-specific theory. In fact, both Bernton et al. (2019) and
Nguyen et al. (2020) explicitly refer to stationary processes when discussing the validity of
the assumptions on DF(µ̂y1:n, µ

∗) and DF(µ̂z1:n, µθ) in non-i.i.d. contexts.
Given the above statistical model, a prior π on θ and a generic IPS discrepancyDF, the ABC

posterior with threshold εn ≥ 0 is defined as

π(εn)
n (θ)∝ π(θ)

∫
Yn
1{DF(z1:n, y1:n)≤ εn} µ(n)

θ (dz1:n).

This definition is the same as the one in Section 2, with the only difference that µnθ =
∏n

i=1µθ
is replaced by the joint µ(n)

θ , since now the data are no more assumed to be independent.
In order to extend the convergence result in Corollary 3.2 together with the concentration

statement in Theorem 3.3 to the above framework, we require an analog of Equation (2) in
Lemma 2.6 for time-dependent data. This generalization can be derived leveraging results
in Mohri and Rostamizadeh (2008) under the notion of β-mixing coefficients.

DEFINITION C.1 (β-mixing). Consider the stationary sequence (xt)t∈Z of random vari-
ables, and let σj

′

j be the σ–algebra generated by the random variables xk, j ≤ k ≤ j′, for
any j, j′ ∈ Z∪{−∞,+∞}. Then, for any integer k > 0, the β-mixing coefficient of (xt)t∈Z
is defined as

β(k) = supt∈ZE[supA∈σ∞t+k|P(A | σt−∞)− P(A)|].

If β(k)→ 0 as k→∞, then the stochastic process (xt)t∈Z is said to be β-mixing.

Intuitively, β(k) measures the dependence between the past (before t) and the future (after
t+ k) of the process. When such a dependence is weak, we expect that β(k) will decay to 0
fast when k→∞. In the most extreme case, when the xt’s are i.i.d., we have β(k) = 0 for
all k > 0. More generally, as clarified in Definition C.1, a process having β(k)→ 0 when
k→∞ is named β-mixing. We refer the reader to Doukhan (1994) for an in-depth study of
the main properties of β-mixing processes along with a more comprehensive discussion of
relevant examples. The most remarkable ones will be also presented in the following.

Leveraging the notion of β-mixing coefficient, Lemma C.2 extends Lemma 2.6 to the de-
pendent setting. The proof can be found in Appendix D and combines Proposition 2 and
Lemma 2 in Mohri and Rostamizadeh (2008). For readability, let us also introduce the no-
tation sn = bn/(2b

√
nc)c. Note that sn ∼

√
n/2 as n→∞, and thus sn→∞.

LEMMA C.2. Define sn = bn/(2b
√
nc)c. Moreover, consider the stationary stochastic

process (xt)t∈Z and denote with β(k), k ∈ N, its β-mixing coefficients. Let µ(n) be the joint
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distribution of a sample x1:n extracted from (xt)t∈Z and denote with µ = µ(1) its constant
marginal. Then, for any b-uniformly bounded class F, any integer n≥ 1 and scalar δ ≥ 0,

Px1:n

[
DF(µ̂x1:n, µ)≤ 2Rµ,sn(F) +

4b√
n

+ δ

]
≥ 1− 2·exp

[
−snδ

2

2b2

]
− 2snβ(b

√
nc),(C.1)

with Rµ,sn(F) the Rademacher complexity in Definition 2.5 for an i.i.d. sample of size sn from µ.

Equation (C.1) extends (2) beyond i.i.d. settings. This extension provides a bound that still
depends on the Rademacher complexity in Definition 2.5 for an i.i.d. sample — in this case
from the common marginal µ of the process (xt)t∈Z. As such, Assumption (IV) requires no
modifications, and no additional validity checks relative to those discussed in Section 3.3.
This suggests that the Rademacher complexity framework might also be leveraged to derive
improved convergence and concentration results for discrepancy-based ABC posteriors in
more general situations which do not necessarily meet Assumption (I). To prove these results
we leverage again Assumptions (II), (III) and (IV), and replace (I) with condition (VII).

(VII) The data y1:n are from a β-mixing stochastic process (yt)t∈Z with mixing coefficients
β(k)≤Cβe−γk

ξ

for some Cβ, γ, ξ > 0, common marginal µ, and generic joint µ∗(n
′)

for a sample y1:n′ from (yt)t∈Z for any n′ ∈ N. The same β-mixing conditions hold
also for the process (zt)t∈Z associated with the synthetic data z1:n from the assumed
model. In this case, the joint distribution for a generic sample z1:n′ is µ(n′)

θ , θ ∈Θ, and
the common marginal is denoted by µθ. For simplicity and without loss of generality,
we also assume that the constants Cβ , γ, and ξ are the same for (yt)t∈Z and (zt)t∈Z.

Assumption (VII) is clearly more general than (I). As discussed previously, it embraces
several stochastic processes of substantial interest in practical applications, including those
in Examples C.3–C.4 below; see Doukhan (1994) for additional examples and discussion.

EXAMPLE C.3 (Doeblin-recurrent Markov chains). Let (xt)t∈Z be a Markov chain on
Y ⊂ Rd with transition kernel P (·, ·). Such a Markov chain is said to be Doeblin-recurrent
if there exists a probability measure q, a constant 0< c≤ 1 and an integer r > 0 such that,
for any measurable set A and any x ∈Rd, P r(x,A)≥ cq(A). When this is the case, (xt)t∈Z
is β-mixing with β(k)≤ 2(1− c)k/r; see e.g., Theorem 1 in page 88 of Doukhan (1994).

EXAMPLE C.4 (Hidden Markov chains). Assume (xt)t∈Z is a β-mixing stochastic pro-
cess with coefficients βx(k), k ∈ N. If x̃t = F (xt, εt) with εt i.i.d., then the β-mixing coeffi-
cients of (x̃t)t∈Z satisfy βx̃(k) = βx(k). Therefore, (x̃t)t∈Z is also β-mixing and inherits the
bounds on βx(k). These processes are often used in practice with (xt)t∈Z being a Markov
chain. In this case (x̃t)t∈Z is called a Hidden Markov chain.

Section 2.4.2 of Doukhan (1994) also provides conditions on F and on the i.i.d. sequence
(εt)t∈Z ensuring that a stationary process (xt)t∈Z satisfying xt = F (xt−1, . . . , xt−k, εt) exists
and is β-mixing. Lemma C.5 specializes such a result in the context of Gaussian AR(1) pro-
cesses, which will be considered in the empirical study in Section C.2.
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LEMMA C.5 (Gaussian AR(1) process). Consider a generic sequence (εt)t∈Z of i.i.d. ran-
dom variables from a N(0, σ2). Moreover, let −1 < θ < 1 and ψ ∈ R. Then the stationary
solution to xt = ψ+ θxt−1 + εt is β-mixing and has coefficients β(k)≤ |θ|k/(2

√
1− θ2) =

(2
√

1− θ2)−1 exp(−k log(1/|θ|)), k ∈N, thus meeting (VII).

Notice that in the empirical study in Section C.2 the focus will be on inference for the AR
parameter θ. Clearly, in this case it is not sufficient to focus on the marginal distribution of
each xt. Rather, one should leverage the bivariate distribution for the pairs x̃t := (xt, xt+1);
see also Bernton et al. (2019) where such a strategy is named delay reconstruction. This pro-
cedure simply changes the focus to the bivariate stochastic process (x̃t)t∈Z, but does not alter
the mixing properties. In particular, if βx(k) and βx̃(k) are the mixing coefficients of (xt)t∈Z
and (x̃t)t∈Z, respectively, then from Definition C.1 we have βx̃(k) = βx(k − 1), for k ≥ 1.
Notice that identifiability is a key to ensure concentration in the space of parameters of in-
terest as in Corollary B.1. This motivates further research, beyond the scope of this article,
to derive delay reconstruction strategies ensuring identifiability in more complex processes.

Leveraging Lemma C.2 along with the newly-introduced Assumption (VII), Proposition
C.6 states convergence of the ABC posterior when εn = ε is fixed and n→∞.

PROPOSITION C.6. Under Assumptions (III), (IV) and (VII), for any ε > ε̃, it holds that

π(ε)
n (θ)→ π(θ | DF(µθ, µ

∗)≤ ε)∝ π(θ)1{DF(µθ, µ
∗)≤ ε} ,(C.2)

almost surely with respect to y1:n ∼ µ∗(n), as n→∞.

According to Proposition C.6, replacing Assumption (I) with (VII), does not alter the uni-
form convergence properties of the ABC posterior originally stated in Corollary 3.2 under the
i.i.d. assumption. This allows to inherit the discussion after Corollary 3.2 also beyond i.i.d.
settings, while suggesting that similar extensions would be possible in the regime εn→ ε∗

and n→∞. These extensions are stated in Theorem C.7, which provides an important gen-
eralization of Theorem 3.3 beyond the i.i.d. case.

THEOREM C.7. Let εn = ε∗+ ε̄n, and assume (II), (III), (IV) and (VII). Then, if ε̄n→ 0
is such that

√
nε̄2

n→∞ and ε̄n/Rsn(F)→∞, with sn = bn/(2b
√
nc)c, we have

π(ε∗+ε̄n)
n

({
θ :DF(µθ, µ

∗)> ε∗ +
4ε̄n
3

+ 2Rsn(F) +
4b√
n

+
(2b2

sn
log

n

ε̄Ln

)1/2})
≤ 4 · 3L

cπn
,

with Py1:n–probability going to 1 as n→∞, where Rsn = supµ∈P(Y) Rµ,sn .

As for Proposition C.6, also Theorem C.7 shows that informative concentration inequali-
ties similar to those derived in Section 3.2, can be obtained beyond the i.i.d. setting. These
results provide insights comparable to those in Theorem 3.3 with the only difference that in
this case we require

√
nε̄2

n→∞ rather than nε̄2
n→∞ and the term 2b2/n within the bound

in Theorem 3.3 is now replaced by 2b2/sn with sn ∼
√
n/2 as n→∞. This means that ε̄n

must shrink to zero with a rate at least n1/4 slower than the one allowed in the i.i.d. setting.
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This is an interesting result which clarifies that when moving beyond i.i.d. regimes concen-
tration can still be achieved, although with a slower rate. Such a rate might be pessimistic in
some models and we believe it may be improved under future refinements of Lemma C.2.

Notice that (VII) could be relaxed to include β-mixing processes whose coefficients β(k)
vanish to zero, but at a non-exponential rate, e.g., β(k)∼ 1/(k+ 1)ξ for some ξ > 0. In this
case, we could still use Lemma C.2 to prove concentration, but with a smaller sn, that would
lead to even slower rates. However, we did not provide the most general result for the sake
of readability. As for processes that are not β-mixing, we are not aware of results similar to
Lemma C.2 in this context. This is an important direction for future research.

C.2. Illustrative simulation in non-i.i.d. settings. Let us illustrate the results in Sec-
tion C.1 on a simple simulation study focusing on a contaminated Gaussian AR(1) process.
More specifically, the uncontaminated data are generated from the model y∗t = 0.5y∗t−1 + εt
for t= 1, . . . ,100 with εt ∼N(0,1) independently, and initial state y∗0 ∼N(0,1). Then, sim-
ilarly to the simulation study in Section 5, these data are contaminated with a growing frac-
tion α ∈ {0.05,0.10,0.15} of independent realizations from a N(20,1). As such, each ob-
served data point yt is either equal to y∗t or to a sample from N(20,1), for t = 1, . . . ,100.
For Bayesian inference, we assume an AR(1) model zt = θzt−1 + εt, with εt ∼N(0,1), and
focus on learning θ via discrepancy-based ABC under a uniform prior on [−1,1] for θ.

Rejection ABC is implemented under the same settings and discrepancies considered in
Section 5. However, as discussed in Section C.1, in this case we focus on distances among
the empirical distributions of the n=m= 100 observed (y0, y1), (y1, y2), . . . , (y99, y100) and
synthetic (z0, z1), (z1, z2), . . . , (z99, z100) pairs. This is consistent with the delay reconstruc-
tion strategy in Bernton et al. (2019) and is motivated by the fact that information on θ is in
the bivariate distributions, rather than in the marginals. For the same reason, in implement-
ing summary-based ABC we consider the sample covariance rather than the sample mean.

Table C.1 summarizes the concentration achieved by the different discrepancies analyzed
under the aforementioned non-i.i.d. data generating process and model, at varying contam-
ination α ∈ {0.05,0.10,0.15}. The results are coherent with those displayed in Table 1 for
the i.i.d. scenario and further clarify that discrepancies with guarantees of uniform conver-
gence and concentration generally provide a robust choice, including in non-i.i.d. contexts.

TABLE C.1
Concentration and runtimes in seconds (for a single discrepancy evaluation) of ABC under MMD with

Gaussian kernel, Wasserstein-1 distance, summary-based distance (covariance) and KL divergence for an
AR(1) Huber contamination model with α ∈ {0.05,0.10,0.15}. MSE = Êµ∗ [ÊABC(θ− θ0)2], θ0 = 0.5.

MSE (α= 0.05) MSE (α= 0.10) MSE (α= 0.15) time
(IPS) MMD 0.029 0.036 0.049 < 0.01”
(IPS) Wasserstein-1 0.043 0.091 0.180 < 0.01”
(IPS) summary (covariance) 0.575 0.998 1.001 < 0.01”
(non–IPS) KL 0.058 0.060 0.061 < 0.01”
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APPENDIX D: PROOFS OF THEOREMS, COROLLARIES AND PROPOSITIONS

PROOF OF THEOREM 3.1. Note that, by leveraging the first inequality in Lemma 2.6, we
have Py1:n[DF(µ̂y1:n, µ

∗) > 2Rµ∗,n(F) + δ] ≤ exp(−nδ2/2b2). Hence, setting δ = 1/n1/4,
and recalling that Rµ∗,n(F)≤Rn(F), it follows Py1:n[DF(µ̂y1:n, µ

∗)> 2Rn(F) + 1/n1/4]≤
exp(−

√
n/2b2); note that

∑
n≥0 exp(−

√
n/2b2)<∞. Therefore, if we define the event

(D.1) En = {DF(µ̂y1:n, µ
∗)≤ 2Rn(F) + 1/n1/4},

then 1{Ecn}→ 0 almost surely with respect to y1:n
i.i.d.∼ µ∗ as n→∞. Now, notice that

π(ε)
n {θ :DF(µθ, µ

∗)≤ ε}= π(ε)
n {θ :DF(µθ, µ

∗)≤ ε}1{En}+ π(ε)
n {θ :DF(µθ, µ

∗)≤ ε}1{Ecn}.

Hence, in the following we focus on π(ε)
n {θ :DF(µθ, µ

∗)≤ ε}1{En}. To this end, recall that

π(ε)
n (θ)∝ π(θ)

∫
1{DF(µ̂y1:n, µ̂z1:n)≤ ε}µnθ (dz1:n)

= π(θ)

∫
1{DF(µθ, µ

∗)≤ ε+WF(z1:n)}µnθ (dz1:n) =: π(θ)pn(θ),

where WF(z1:n) =DF(µθ, µ
∗)−DF(µ̂y1:n, µ̂z1:n), whereas pn(θ) denotes the probability of

generating a sample z1:n from µnθ which leads to accept the parameter value θ. Note that, by
applying the triangle inequality twice, we have

−DF(µ̂z1:n, µθ)−DF(µ̂y1:n, µ
∗)≤WF(z1:n)≤DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ

∗),

and, hence, |WF(z1:n)| ≤ DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗). This implies that the quantity pn(θ)

can be bounded below and above as follows∫
1{DF(µθ, µ

∗)≤ ε−DF(µ̂z1:n, µθ)−DF(µ̂y1:n, µ
∗)}µnθ (dz1:n)

≤ pn(θ)≤
∫
1{DF(µθ, µ

∗)≤ ε+DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗)}µnθ (dz1:n).

Applying again Lemma 2.6 yields Pz1:n [DF(µ̂z1:n, µθ)> 2Rµθ,n(F) + δ]≤ exp(−nδ2/2b2).
Therefore, setting δ = 1/n1/4, and recalling that Rµθ,n(F)≤Rn(F) and that we are on the
event given in (D.1), it follows

(D.2) − exp(−
√
n/2b2) + 1{DF(µθ, µ

∗)≤ ε− 4Rn(F)− 2/n1/4}

≤ pn(θ)≤ exp(−
√
n/2b2) + 1{DF(µθ, µ

∗)≤ ε+ 4Rn(F) + 2/n1/4}.

Now, notice that the acceptance probability is defined as pn =
∫
pn(θ)π(dθ). Hence, inte-

grating with respect to π(θ) in the above inequalities yields, for n large enough,

π{θ :DF(µθ, µ
∗)≤ ε− cF} − en ≤ pn ≤ π{θ :DF(µθ, µ

∗)≤ ε+ cF}+ en,

where cF = 4 lim supRn(F), as in Equation (3), thus concluding the first part of the proof.
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To proceed with the second part of the proof, notice that, by the definition of ε̃= inf{ε >
0 : π{θ :DF(µθ, µ

∗)≤ ε}> 0}, the left part of the above inequality is bounded away from
zero for n large enough, whenever ε− cF > ε̃. This implies that also the acceptance proba-
bility pn is strictly positive. As a consequence, for such n, it follows that

π(ε)
n (A) =

∫
pn(θ)1A(θ)π(dθ)∫
pn(θ)π(dθ)

=

∫
pn(θ)1A(θ)π(dθ)

pn
,

is well-defined for any event A. Then, leveraging the upper bound in (D.2) yields

π(ε)
n {θ :DF(µθ, µ

∗)> ε+ 4Rn(F)}=

∫
pn(θ)1{DF(µθ, µ

∗)> ε+ 4Rn(F)}π(dθ)∫
pn(θ)π(dθ)

≤
∫
1
{
DF(µθ, µ

∗)≤ ε+ 4Rn(F) + 2/n1/4
}
1{DF(µθ, µ

∗)> ε+ 4Rn(F)}π(dθ)

pn

+

∫
exp(−

√
n/2b2)1{DF(µθ, µ

∗)> ε+ 4Rn(F)}π(dθ)

pn
.

To conclude the proof it is now necessary to control both terms. Note that we already proved
that the denominator pn is bounded away from zero for n large enough. Both numerators are
bounded by 1, and going to 0 when n→∞. Thus, by the dominated convergence theorem,
both summands in the above upper bound for π(ε)

n {θ :DF(µθ, µ
∗)> ε+ 4Rn(F)} go to zero.

This implies, as a direct consequence, that π(ε)
n {θ :DF(µθ, µ

∗)≤ ε+ 4Rn(F)}→ 1, almost
surely with respect to y1:n

i.i.d.∼ µ∗ as n→∞, thereby concluding the proof.

PROOF OF COROLLARY 3.2. Note that by combining Equation (2) in Lemma 2.6 with the
result

∑
n>0 exp[−nδ2/(2b2)]<∞, the Borel–Cantelli Lemma implies that bothDF(µ̂z1:n, µθ)

and DF(µ̂y1:n, µ
∗) converge to 0 almost surely when Rn(F)→ 0 as n→∞. Hence, since

−DF(µ̂z1:n, µθ)−DF(µ̂y1:n, µ
∗)≤DF(µθ, µ

∗)−DF(µ̂y1:n, µ̂z1:n)≤DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗),

it follows that DF(µ̂z1:n, µ̂y1:n)→DF(µθ, µ
∗) almost surely as n→∞.

Combining this result with the proof of Theorem 1 in Jiang, Wu and Wong (2018) yields
the statement of Corollary 3.2. Notice that, as discussed in Section 3.1, the limiting pseudo-
posterior in Corollary 3.2 is well-defined only for those ε > ε̃, with ε̃ as in Theorem 3.1.

PROOF OF THEOREM 3.3. Since Lemma 2.6 and Rn(F) = supµ∈P(Y) Rµ,n(F)≥Rµ,n(F)
hold for every µ ∈ P(Y), then, for every integer n≥ 1 and any scalar δ ≥ 0, Equation (2)
implies Px1:n [DF(µ̂x1:n, µ)≤ 2Rn(F) + δ]≥ 1− exp(−nδ2/2b2). Moreover, since this re-
sult holds for any δ ≥ 0, it follows that Px1:n[DF(µ̂x1:n, µ) ≤ 2Rn(F) + (c1 − 2Rn(F))] ≥
1− exp[−n(c1− 2Rn(F))2/2b2], for any c1 ≥ 2Rn(F). Hence,

(D.3) Px1:n [DF(µ̂x1:n, µ)≤ c1]≥ 1− exp[−n(c1− 2Rn(F))2/2b2].

Recalling the settings of Theorem 3.3, consider the sequence ε̄n→ 0 as n→∞, with nε̄2
n→

∞ and ε̄n/Rn(F)→∞, which is possible by Assumption (IV). These regimes imply that ε̄n
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goes to zero slower than Rn(F) and, hence, for n large enough, ε̄n/3> 2Rn(F). Therefore,
under Assumptions (I)–(III) it is now possible to apply (D.3) to y1:n, by setting c1 = ε̄n/3,
which yields

Py1:n [DF(µ̂y1:n, µ
∗)≤ ε̄n/3]≥ 1− exp[−n(ε̄n/3− 2Rn(F))2/2b2].

Since −n(ε̄n/3 − 2Rn(F))2 = −nε̄2
n[1/9 + 4(Rn(F)/ε̄n)

2 − (4/3)Rn(F)/ε̄n], it follows
that −n(ε̄n/3 − 2Rn(F))2 →−∞ when n→∞. From the above settings we also have
that nε̄2

n→ ∞ and Rn(F)/ε̄n→ 0, when n→∞. Therefore, as a consequence, we obtain
1− exp[−n(ε̄n/3−2Rn(F))2/2b2]→ 1 as n→∞. Hence, in the rest of this proof, we will
restrict to the event {DF(µ̂y1:n, µ

∗)≤ ε̄n/3}.
Denote with Pθ,z1:n the joint distribution of θ ∼ π and z1:n i.i.d. from µθ. By definition of

conditional probability, for any c2, including c2 > 2Rn(F), it follows that

π(ε∗+ε̄n)
n ({θ :DF(µθ, µ

∗)> ε∗ + 4ε̄n/3 + c2})

=
Pθ,z1:n [DF(µθ, µ

∗)> ε∗ + 4ε̄n/3 + c2,DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]

Pθ,z1:n [DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]
.

(D.4)

To derive an upper bound for the above ratio, we first identify an upper bound for its numera-
tor. In addressing this goal, we leverage the triangle inequalityDF(µθ, µ

∗)≤DF(µ̂z1:n, µθ)+
DF(µ̂z1:n, µ̂y1:n) +DF(µ̂y1:n, µ

∗), since DF is a semimetric, and the previously-proved result
that the event {DF(µ̂y1:n, µ

∗)≤ ε̄n/3} has Py1:n–probability going to 1, thereby obtaining

Pθ,z1:n[DF(µθ, µ
∗)> ε∗ + 4ε̄n/3 + c2,DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]

≤ Pθ,z1:n[DF(µ̂z1:n, µ̂y1:n) +DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗)> ε∗ + 4ε̄n/3 + c2,

DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]

≤ Pθ,z1:n [DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗)> ε̄n/3 + c2]≤ Pθ,z1:n [DF(µ̂z1:n, µθ)> c2] .

Rewriting Pθ,z1:n [DF(µ̂z1:n, µθ)> c2] as
∫
θ∈Θ Pz1:n [DF(µ̂z1:n, µθ)> c2 | θ]π(dθ) and apply-

ing (D.3) to z1:n yields∫
θ∈Θ

Pz1:n[DF(µ̂z1:n,µθ)> c2|θ]π(dθ) =

∫
θ∈Θ

(1− Pz1:n[DF(µ̂z1:n,µθ)≤ c2|θ])π(dθ)

≤
∫
θ∈Θ

exp[−n(c2− 2Rn(F))2/2b2]π(dθ) = exp[−n(c2− 2Rn(F))2/2b2].

Hence, the numerator of the ratio in Equation (D.4) can be upper bounded by exp[−n(c2−
2Rn(F))2/2b2] for any c2 > 2Rn(F). As for the denominator, defining the event En := {θ ∈
Θ :DF(µθ, µ

∗)≤ ε∗ + ε̄n/3} and applying again the triangle inequality, we have that

Pθ,z1:n[DF(µ̂z1:n, µ̂y1:n)≤ ε∗+ ε̄n]≥
∫

En
Pz1:n [DF(µ̂z1:n, µ̂y1:n)≤ ε∗+ ε̄n | θ]π(dθ)
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≥
∫

En
Pz1:n [DF(µ̂y1:n, µ

∗) +DF(µθ, µ
∗) +DF(µ̂z1:n, µθ)≤ ε∗ + ε̄n | θ]π(dθ)

≥
∫

En
Pz1:n [DF(µ̂z1:n, µθ)≤ ε̄n/3 | θ]π(dθ),

where the last inequality follows directly from the fact that it is possible to restrict to the
event {DF(µ̂y1:n, µ

∗)≤ ε̄n/3}, and that we are integrating over En := {θ ∈Θ :DF(µθ, µ
∗)≤

ε∗ + ε̄n/3}. Applying again (D.3) to z1:n, with c1 = ε̄n/3 > 2Rn(F), the last term of the
above inequality can be further lower bounded by∫

En
(1− exp[−n(ε̄n/3− 2Rn(F))2/2b2])π(dθ)

= π(En)(1− exp[−n(ε̄n/3− 2Rn(F))2/2b2]),

with π(En)≥ cπ(ε̄n/3)L by (II), and, as shown before, 1−exp[−n(ε̄n/3−2Rn(F))2/2b2]→
1, when n→∞, which implies, for n large enough, 1− exp[−n(ε̄n/3− 2Rn(F))2/2b2]>
1/2. Leveraging both results, the denominator in (D.4) is lower bounded by (cπ/2) (ε̄n/3)L.
Let us now combine the upper and lower bounds derived, respectively, for the numerator
and the denominator of the ratio in (D.4), to obtain

(D.5) π(ε∗+ε̄n)
n ({θ ∈Θ :DF(µθ,µ

∗)> ε∗+ 4ε̄n/3 + c2})≤
exp[−n(c2− 2Rn(F))2/2b2]

(cπ/2)(ε̄n/3)L
,

with Py1:n–probability going to 1 as n→∞. To conclude the proof it suffices to replace c2 in
(D.5) with 2Rn(F) +

√
(2b2/n) log(Mn/ε̄Ln), which is never lower than 2Rn(F). Finally,

setting Mn = n yields the statement of Theorem 3.3.

PROOF OF COROLLARY B.1. Corollary B.1 follows by replacing the bounds in the proof
of Corollary 1 by Bernton et al. (2019) with the newly-derived ones in Theorem 3.3.

PROOF OF COROLLARY 4.1. Recall that in the case of MMD with kernels bounded by 1
we have Rn(F)≤ n−1/2. Hence, regarding the upper and lower bounds on pn in (3) it holds

π{θ :DMMD(µθ, µ
∗)≤ ε− cF} ≥ π{θ :DMMD(µθ, µ

∗)≤ ε− 4/
√
n},

π{θ :DMMD(µθ, µ
∗)≤ ε+ cF} ≤ π{θ :DMMD(µθ, µ

∗)≤ ε+ 4/
√
n}.

Combining the above inequalities with the result in (3), and taking the limit for n→∞,
proves the first part of the statement. The second part is a direct application of Corollary 3.2
to the case of MMD with bounded kernels, after noticing that the aforementioned inequality
Rn(F)≤ n−1/2 implies Rn(F)→ 0 as n→∞.

PROOF OF COROLLARY 4.2. To prove Corollary 4.2, it suffices to plug ε̄n = [(logn)/n]
1
2

and b= 1 into the statement of Theorem 3.3, and then upper-bound the resulting radius via
the inequalities Rn(F)≤ n−1/2 and logn≥ 1. The latter holds for any n≥ 3 and hence for
n→∞.
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PROOF OF PROPOSITION 4.3. We first show that, under (A1)–(A3), Assumptions 1 and 2
made in Bernton et al. (2019) are satisfied under MMD when fn(ε̄n) = 1/(nε̄2

n) and c(θ) =
Ez [k(z, z)], with z ∼ µθ.

Consistent with the above goal, first recall that, by standard properties of MMD,

(D.6) D2
MMD(µ1, µ2) = Ex1,x′1 [k(x1, x

′
1)]− 2Ex1,x2 [k(x1, x2)] + Ex2,x′2 [k(x2, x

′
2)] ,

with x1, x
′
1 ∼ µ1 and x2, x

′
2 ∼ µ2, all independently; see e.g., Chérief-Abdellatif and Alquier

(2022). Since k(x,x′) = 〈φ(x), φ(x′)〉H (see e.g., Muandet et al., 2017), the above result im-
plies that

D2
MMD(µ1, µ2)

= Ex1,x′1 [〈φ(x1), φ(x′1)〉H]− 2Ex1,x2 [〈φ(x1), φ(x2)〉H] + Ex2,x′2 [〈φ(x2), φ(x′2)〉H]

= ||Ex1[φ(x1)]||2H − 2 〈Ex1[φ(x1)],Ex2[φ(x2)]〉H + ||Ex2[φ(x2)]||2H
= ‖Ex1 [φ(x1)]−Ex2 [φ(x2)]‖2

H .

(D.7)

Leveraging Equations (D.6)–(D.7) and basic Markov inequalities, for any ε̄n ≥ 0, it holds

Py1:n [DMMD(µ̂y1:n, µ
∗)> ε̄n]≤ (1/ε̄2

n)Ey1:n
[
D2

MMD(µ̂y1:n, µ
∗)
]

= (1/ε̄2
n)Ey1:n[‖(1/n)

∑n
i=1φ(yi)−Ey [φ(y)]‖2

H]≤ [1/(n2ε̄2
n)]
∑n

i=1Eyi[‖φ(yi)‖2
H]

≤ [1/(nε̄2
n)]Ey1[‖φ(y1)‖2

H] = [1/(nε̄2
n)]Ey1 [k(y1, y1)] = [1/(nε̄2

n)]Ey [k(y, y)] ,

with y ∼ µ∗. Since [1/(nε̄2
n)]Ey [k(y, y)]→ 0 as n→∞ by condition (A1), we have that

DMMD(µ̂y1:n, µ
∗)→ 0 in Py1:n–probability as n→∞, thus meeting Assumption 1 in Bernton

et al. (2019). Moreover, as a direct consequence of the above derivations,

Pz1:n [DMMD(µ̂z1:n, µθ)> ε̄n]≤ [1/(nε̄2
n)]Ez [k(z, z)] .

Thus, setting 1/(nε̄2
n) = fn(ε̄n) and Ez [k(z, z)] = c(θ), with z ∼ µθ, ensures that

Pz1:n [DMMD(µ̂z1:n, µθ]> ε̄n]≤ c(θ)fn(ε̄n),

with fn(u) = 1/(nu2) strictly decreasing in u for any fixed n, and fn(u)→ 0 as n→∞,
for fixed u. Moreover, by Assumptions (A2)–(A3), c(θ) = Ez [k(z, z)] is π-integrable and
there exist a δ0 > 0 and a c0 > 0 such that c(θ) < c0 for any θ satisfying (Ez,z′ [k(z, z′)]−
2Ez,y [k(y, z)] + Ey,y′ [k(y, y′)])1/2 = DMMD(µθ, µ

∗) ≤ ε∗ + δ0. This ensures that Assump-
tion 2 in Bernton et al. (2019) holds.

Finally, note that Assumption 3 in Bernton et al. (2019), is verified by our Assumption (II).
Therefore, under the assumptions in Proposition 4.3 it is possible to apply Proposition 3 in
Bernton et al. (2019) with fn(ε̄n) = 1/(nε̄2

n), c(θ) = Ez [k(z, z)] andR=Mn, which yields
the concentration result in Proposition 4.3.
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PROOF OF PROPOSITION 4.4. Assumptions (A1’) and (A2’) imply that the norm ‖‖x‖‖ψ1

(see Equation (14) in Lei (2020) for a definition) is uniformly bounded when x ∼ µθ and
x∼ µ∗. Thus, we can use (15) in Lei (2020) to obtain

Pz1:n (Dwass(µθ, µ̂z1:n)> u)≤ exp[−c′n(u− c1n
−1/max(d,3))2

+] =: fn(u)

and, similarly, Py1:n (Dwass(µ
∗, µ̂y1:n)> u)≤ fn(u), where c′ depends only on the constant c

in (A1’) and (A2’), and c1 is a universal constant. Notice that (15) in Lei (2020) requires
d > 2. If d= 1, we can define x′ = (x,0,0) ∈R3 and apply the result in R3 (we can proceed
similarly if d= 2). This is why Proposition 4.4 is stated with max(d,3). The above bounds
ensure that Assumptions 1–2 in Bernton et al. (2019) are met. Moreover, condition (II) veri-
fies Assumption 3 in Bernton et al. (2019). Thus, we can apply Proposition 3 of Bernton et al.
(2019) with fn(·) defined as above and under the vanishing conditions on ε̄n in Proposition
4.4. This implies that when n→∞, and ε̄n→ 0 such that fn(ε̄n)→ 0, for some C ∈ (0,∞)
and any Mn ∈ (0,∞), with Py1:n–probability going to 1 as n→∞, it holds

π(ε∗+ε̄n)
n ({θ :Dwass(µθ, µ

∗)> ε∗ + 4ε̄n/3 + f−1
n

(
ε̄Ln/Mn

)
})≤C/Mn.

Recall that our restriction n−1/max(d,3)� ε̄n, together with nε̄2
n→∞, imply that for n large

enough fn(·) is invertible and fn(ε̄n)→ 0. On such a range, we have that f−1
n

(
ε̄Ln/Mn

)
=

[(1/(c′n)) log(Mn/ε̄
L
n)]1/2 + c1n

−1/max(d,3), which concludes the proof.

PROOF OF LEMMA C.2. Let (xt)t∈Z be a stochastic process with β-mixing coefficients
β(k), for k ∈ N. Moreover, denote with µ(n) and µ the joint distribution of a sample x1:n

from (xt)t∈Z and its constant marginal µ = µ(1), respectively. Then, by combining Propo-
sition 2 and Lemma 2 in Mohri and Rostamizadeh (2008) under our notation, we have that
for any b-uniformly bounded class F, any integer n≥ 1 and any scalar δ ≥ 0, the inequality

Px1:n
[
DF(µ̂x1:n, µ)> 2Rµ,n/(2K)(F) + δ

]
≤ 2 exp(−nδ2/Kb2) + 2(n/2K − 1)β(K),

holds for every integer K > 0 such that n/(2K) ∈ N, where Rµ,n/(2K) is the Rademacher
complexity based an i.i.d. sample of size n/(2K) from µ; see Definition 2.5. The above con-
centration inequality also implies

Px1:n
[
DF(µ̂x1:n, µ)≤ 2Rµ,n/(2K)(F) + δ

]
≥ 1− 2 exp(−nδ2/Kb2)− 2(n/2K − 1)β(K)

≥ 1− 2 exp[−nδ2/(4Kb2)]− 2(n/2K)β(K).

(D.8)

Notice that, in order to ensure that both 2 exp(−nδ2/4Kb2) and 2(n/2K)β(K) vanish to
zero (under Assumption (VII) for β(K)), it is tempting to apply (D.8) withK = nα for some
0< α< 1. Unfortunately, there is no reason for such aK to be an integer. A solution, would
be to let K = bnαc, but in this case n/(2K) might not be an integer. To address such issues,
it is necessary to consider a careful modification of (D.8). To this end write the Euclidean
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division n= n′+ r where n′ = 2Kh≤ n, h= bn/(2K)c and 0≤ r < 2K . Then, under the
common marginal assumption and recalling also Proposition 1 in Mohri and Rostamizadeh
(2008) together with the triangle inequality and the fact that the functions f within F are
b-uniformly bounded, we have that

DF(µ̂x1:n, µ) = sup
f∈F

∣∣∣∣1n∑n

i=1
[f(xi)−Eµf(x)]

∣∣∣∣
≤ sup

f∈F

∣∣∣∣1n∑n′

i=1
[f(xi)−Eµf(x)]

∣∣∣∣+ 1

n
sup
f∈F

∣∣∣∣∑n′+r

i=n′+1
[f(xi)−Eµf(x)]

∣∣∣∣
≤ sup

f∈F

∣∣∣∣ 1

n′

∑n′

i=1
[f(xi)−Eµf(x)]

∣∣∣∣+ 2br

n
≤DF(µ̂x1:n′ , µ) +

4bK

n
,

where the last inequality follows directly from the definition of DF(µ̂x1:n′ , µ) together with
the fact that 0≤ r < 2K . Applying now (D.8) to DF(µ̂x1:n′ , µ) yields

Px1:n
[
DF(µ̂x1:n′ , µ) + 4bK/n≤ 2Rµ,h(F) + δ + 4bK/n

]
≥ 1− 2 exp(−hδ2/2b2)− 2hβ(K).

Therefore, since DF(µ̂x1:n, µ)≤DF(µ̂x1:n′ , µ) + 4bK/n we also have that

Px1:n [DF(µ̂x1:n, µ)≤ 2Rµ,h(F) + δ + 4bK/n]≥ 1− 2 exp(−hδ2/2b2)− 2hβ(K).

To conclude the proof, notice that to prove convergence and concentration of the ABC pos-
terior it will be sufficient to let K = b

√
nc. Therefore, by replacing K = b

√
nc in the above

inequality and within the expression for h= bn/(2K)c we have

Px1:n
[
DF(µ̂x1:n, µ) ≤ 2Rµ,sn(F) +

4b√
n

+ δ
]
≥ 1 − 2 exp(−snδ2/2b2) − 2snβ(b

√
nc)

where sn = bn/(2b
√
nc)c and the term 4b/

√
n follows directly from the fact that b

√
nc/n≤√

n/n= 1/
√
n.

PROOF OF LEMMA C.5. The proof follows the arguments used in Chapter 2 of Doukhan
(1994) to study general Markov chains. In particular, when (xt)t∈Z is a stationary Markov
chain with invariant distribution π(·) and transition kernel P (·, ·), a result proven in Davy-
dov (1974) and recalled in page 87–88 of Doukhan (1994) gives β(k) = Ex∼π‖P k(x, ·)−
π(·)‖TV. When −1< θ < 1, standard results for the AR(1) model in Lemma C.5 lead to the
invariant distribution π = N(ψ/(1− θ), σ2/(1− θ2)).

As for P k(x, ·), notice that, under such an AR(1) model with starting point x, we can write

xk = θxk−1 + ψ + εk = θ(θxk−2 + ψ + εk−1) + ψ + εk = . . .

= θkx+ ψ
∑k−1

l=0
θl +

∑k−1

l=0
θlεk−l.

Therefore, P k(x, ·) = N(θkx+ ψ
∑k−1

l=0 θ
l, σ2

∑k−1
l=0 θ

2l).
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Moreover, notice that, by direct application of standard properties of finite power series,
we have

∑k−1
l=0 θ

l = (1− θk)/(1− θ) and
∑k−1

l=0 θ
2l = (1− θ2k)/(1− θ2). Since our goal is

to derive an upper bound for β(k) and provided that the KL divergence among Gaussian
densities is available in closed form, let us first consider the Pinsker’s inequality

‖P k(x, ·)− π(·)‖TV ≤ [DKL(P k(x, ·), π(·))/2]1/2

where DKL stands for the KL divergence. Since both P k(x, ·) and π(·) are Gaussian, then

DKL(P k(x, ·), π(·))

=
1

2

[
σ2(1− θ2k)

σ2
− 1 +

[θkx+ ψ(1− θk)/(1− θ)− ψ/(1− θ)]2

σ2/(1− θ2)
+ log

σ2

σ2(1− θ2k)

]
=

1

2

[
(1− θ2k)− 1 +

θ2k[x− ψ/(1− θ)]2

σ2/(1− θ2)
+ log

1

1− θ2k

]
=

1

2

[
−θ2k +

θ2k[x− ψ/(1− θ)]2

σ2/(1− θ2)
+ log

(
1 +

θ2k

1− θ2k

)]
≤ 1

2

[
−θ2k +

θ2k[x− ψ/(1− θ)]2

σ2/(1− θ2)
+

θ2k

1− θ2k

]
≤ θ2k

2

[
−1 +

[x− ψ/(1− θ)]2

σ2/(1− θ2)
+

1

1− θ2

]
.

Therefore, by leveraging the above result, together with standard properties of the expecta-
tion, we have

β(k)≤ Ex∼π[DKL(P k(x, ·), π(·))/2]1/2 ≤ [Ex∼πDKL(P k(x, ·), π(·))/2]1/2

≤
[
θ2k

4

[
−1 +

Ex∼π[x− ψ/(1− θ)]2

σ2/(1− θ2)
+

1

1− θ2

]]1/2

=

√
θ2k

4(1− θ2)
=

|θ|k

2
√

1− θ2
,

which concludes the proof.

PROOF OF PROPOSITION C.6. Under Assumption (VII), for any fixed δ > 0, we have that∑
n>0[2 exp(−snδ2/2b2)+2snCβ exp(−γb

√
ncξ)]<∞. Therefore, combining Lemma C.2

with Assumption (IV), both DF(µ̂z1:n, µθ) and DF(µ̂y1:n, µ
∗) converge to 0 almost surely as

n→∞, by the Borel–Cantelli Lemma. As a result, since

−DF(µ̂z1:n, µθ)−DF(µ̂y1:n, µ
∗)≤DF(µθ, µ

∗)−DF(µ̂y1:n, µ̂z1:n)≤DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗),

it holds that DF(µ̂z1:n, µ̂y1:n)→DF(µθ, µ
∗) almost surely as n→∞. To conclude it suffices

to apply again the proof of Theorem 1 in Jiang, Wu and Wong (2018); see also the proof of
Corollary 3.2.

PROOF OF THEOREM C.7. To prove Theorem C.7 we will follow the same line of rea-
soning as in the proof of Theorem 3.3. However, in this case we leverage Lemma C.2 instead
of Lemma 2.6. To this end, letting δ = c1−2Rsn(F)−4b/

√
n with c1 ≥ 2Rsn(F) + 4b/

√
n
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and Rsn = supµ∈P(Y) Rµ,sn , we obtain, under Assumption (VII), Equation (D.9) below, in-
stead of (D.3).

(D.9) Px1:n [DF(µ̂x1:n, µ)≤ c1]

≥ 1− 2 exp[−sn(c1− 2Rsn(F)− 4b/
√
n)2/2b2]− 2snCβ exp(−γb

√
ncξ).

As in Theorem 3.3, let c1 = ε̄n/3 and notice that, by the settings of Theorem C.7, for n large
enough ε̄n/3> 2Rsn(F) + 4b/

√
n. Therefore, applying (D.9) to y1:n, with c1 = ε̄n/3, leads

to the following upper bound

Py1:n [DF(µ̂y1:n, µ
∗)≤ ε̄n/3]

≥ 1− 2 exp[−sn(ε̄n/3− 2Rsn(F)− 4b/
√
n)2/2b2]− 2snCβ exp(−γb

√
ncξ).

Recall that, under the settings of Theorem C.7, we have that
√
nε̄2

n→∞ and ε̄n/Rsn(F)→
∞ and, therefore,

sn(ε̄n/3− 2Rsn(F)− 4b/
√
n)2 ∼ snε̄2

n/9∼
√
nε̄2

n→∞.

Combining this result with the fact that 2snCβ exp(−γb
√
ncξ)→ 0 as n→∞, it follows

that the lower bound for Py1:n [DF(µ̂y1:n, µ
∗)≤ ε̄n/3] goes to 1 as n→∞. Hence, in the re-

maining part of the proof, we will restrict to the event {DF(µ̂y1:n, µ
∗)≤ ε̄n/3}.

Let Pθ,z1:n corresponds to the joint distribution of θ ∼ π and z1:n from µ
(n)
θ . Then, as a di-

rect consequence of the definition of conditional probability, for every positive c2, including
c2 > 2Rsn(F) + 4b/

√
n, it follows that

π(ε∗+ε̄n)
n ({θ :DF(µθ, µ

∗)> ε∗ + 4ε̄n/3 + c2})

=
Pθ,z1:n [DF(µθ, µ

∗)> ε∗ + 4ε̄n/3 + c2,DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]

Pθ,z1:n [DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]
.

(D.10)

To upper bound the ratio in (D.10), let us first derive an upper bound for the numerator. To
this end, consider the triangle inequality DF(µθ, µ

∗) ≤ DF(µ̂z1:n, µθ) + DF(µ̂z1:n, µ̂y1:n) +
DF(µ̂y1:n, µ

∗) (recall that DF is a semimetric), along with the previously-proved result that
the event {DF(µ̂y1:n, µ

∗)≤ ε̄n/3} has Py1:n–probability going to 1. Hence, for n large enough
we have

Pθ,z1:n[DF(µθ, µ
∗)> ε∗ + 4ε̄n/3 + c2,DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]

≤ Pθ,z1:n[DF(µ̂z1:n, µ̂y1:n) +DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗)> ε∗ + 4ε̄n/3 + c2,

DF(µ̂z1:n, µ̂y1:n)≤ ε∗ + ε̄n]

≤ Pθ,z1:n [DF(µ̂z1:n, µθ) +DF(µ̂y1:n, µ
∗)> ε̄n/3 + c2]≤ Pθ,z1:n [DF(µ̂z1:n, µθ)> c2] ,

where Pθ,z1:n [DF(µ̂z1:n, µθ)> c2] =
∫
θ∈Θ Pz1:n [DF(µ̂z1:n, µθ)> c2 | θ]π(dθ).



17

Therefore, leveraging the above result and applying (D.9) to z1:n yields,∫
θ∈Θ

Pz1:n[DF(µ̂z1:n, µθ)> c2 | θ]π(dθ) =

∫
θ∈Θ

(1− Pz1:n[DF(µ̂z1:n, µθ)≤ c2 | θ])π(dθ)

≤ 2 exp[−sn(c2− 2Rsn(F)− 4b/
√
n)2/2b2] + 2snCβ exp(−γb

√
ncξ).

This controls the numerator in (D.10). As for the denominator, defining the event En :=
{θ ∈Θ :DF(µθ, µ

∗)≤ ε∗ + ε̄n/3} and applying again the triangle inequality, we have that

Pθ,z1:n[DF(µ̂z1:n, µ̂y1:n)≤ ε∗+ ε̄n]≥
∫

En
Pz1:n [DF(µ̂z1:n, µ̂y1:n)≤ ε∗+ ε̄n | θ]π(dθ)

≥
∫

En
Pz1:n [DF(µ̂y1:n, µ

∗) +DF(µθ, µ
∗) +DF(µ̂z1:n, µθ)≤ ε∗ + ε̄n | θ]π(dθ)

≥
∫

En
Pz1:n [DF(µ̂z1:n, µθ)≤ ε̄n/3 | θ]π(dθ).

The last inequality follows from that fact that we can restrict to the event {DF(µ̂y1:n, µ
∗)≤

ε̄n/3}, and that we are integrating over En := {θ ∈ Θ : DF(µθ, µ
∗) ≤ ε∗ + ε̄n/3}. Let us

now apply again (D.9) to z1:n, with c1 = ε̄n/3, to further lower bound the last term of the
above inequality by∫

En
[1− 2 exp[−sn(ε̄n/3− 2Rsn(F)− 4b/

√
n)2/2b2]− 2snCβ exp(−γb

√
ncξ)]π(dθ)

= π(En)[1− 2 exp[−sn(ε̄n/3− 2Rsn(F)− 4b/
√
n)2/2b2]− 2snCβ exp(−γb

√
ncξ)].

Note that, by Assumption (II), π(En)≥ cπ(ε̄n/3)L. Moreover, as shown before, the quantity
1− 2 exp[−sn(ε̄n/3− 2Rsn(F)− 4b/

√
n)2/2b2]− 2snCβ exp(−γb

√
ncξ) goes to 1 when

n→∞, which also implies that, for a large enough n,

1− 2 exp[−sn(ε̄n/3− 2Rsn(F)− 4b/
√
n)2/2b2]− 2snCβ exp(−γb

√
ncξ)> 1/2.

Therefore, leveraging both results, the denominator in (D.10) can be lower bounded by the
term (cπ/2) (ε̄n/3)L.

To proceed with the proof, let us combine the upper and lower bounds derived, respec-
tively, for the numerator and the denominator of the ratio in (D.10). This yields, for any in-
teger K ,

(D.11) π(ε∗+ε̄n)
n ({θ :DF(µθ, µ

∗)> ε∗ + 4ε̄n/3 + c2})

≤ 2 exp[−sn(c2− 2Rsn(F)− 4b/
√
n)2/2b2] + 2snCβ exp(−γb

√
ncξ)

(cπ/2)(ε̄n/3)L
,

with Py1:n–probability going to 1 as n→∞.
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Replacing c2 in (D.11) with 2Rsn(F) +
√

(2b2/sn) log(n/ε̄Ln) + 4b/
√
n , gives

π(ε∗+ε̄n)
n

({
θ :DF(µθ, µ

∗)> ε∗ +
4ε̄n
3

+ 2Rsn(F) +
4b√
n

+
(2b2

sn
log

n

ε̄Ln

)1/2})
≤ 4 · 3L

ncπ

(
1 +

nsnCβ exp(−γb
√
ncξ)

ε̄Ln

)
.

To conclude, note that

nsnCβ exp(−γb
√
ncξ)/ε̄Ln = n1+L/2snCβ exp(−γb

√
ncξ)/((nε̄2

n)
L/2),

where the numerator goes to 0 and the denominator goes to ∞ when n→∞, under the
setting of Theorem C.7. Therefore, with Py1:n–probability going to 1 as n→∞, we have

π(ε∗+ε̄n)
n

({
θ :DF(µθ, µ

∗)> ε∗ +
4ε̄n
3

+ 2Rsn(F) +
4b√
n

+
(2b2

sn
log

n

ε̄Ln

)1/2})
≤ 4 · 3L

ncπ
,

concluding the proof.
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