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Popular estimation methods in statistics, such as the maximum likelihood estimator
(MLE), or the method of moments, require strong assumptions on the statistical model
and the data-generating process to converge. When these conditions are not met, these
estimators can become very unstable. We are interested in universal estimators, that
would converge without assumptions on the model. For example, [15] proved that so-
called minimum distance estimators converge under far more general assumptions than
the MLE. More recently, the ρ-estimators defined in [4] are not only convergent, but
minimax-optimal, in a very large class of models. However, there are still a few limitating
assumptions in [15, 4], and the computation of these estimators might be difficult in
practice.

This talk will summarize a recent line of work on a variant of minimum distance
estimators based on the so-called maximum mean discrepancy (MMD). In the case of
i.i.d. data, these estimators converge without any assumption on the model nor on the
data generating process. Moreover, relatively efficient algorithms are available to
compute these estimators.

Let X1, . . . , Xn be X -valued random variables i.i.d. from a probability distribution
P 0. Let M = (Pθ, θ ∈ Θ) be a statistial model. Note that we don’t assume P 0 ∈ M.
Let H be a reproducing kernel Hilbert space (RKHS) equipped with a scalar product
⟨·, ·⟩, its associated norm ∥ · ∥ and a kernel k: there is a map φ : X → H with k(x, y) =
⟨φ(x), φ(y)⟩. The kernel mean embedding (KME) is defined for any probability P on X by
µ(P ) = EX∼P [φ(X)]. We refer the reader to [11] for more details on this construction.
In particular: if k is bounded, then the KME is indeed well-defined for any P ; if k is
characteristic (see [11] for a definition), µ is one-to-one. Thus, if k is both bounded
and characteristic, Dk(P, P

′) = ∥µ(P )− µ(P ′)∥ defines a metric on probabilities over X .
Finally, [11] provides examples of kernels that are indeed bounded and characteristic:
for example, when X = Rd, the Gaussian kernel k(x, y) = exp(−∥x− y∥2/γ).

Definition 0.1. We define the MMD-minimum distance estimator, or MMD-MDE, as

θ̂ = argmin
θ∈Θ

Dk(Pθ, P̂n)

where P̂n = 1
n

∑n
i=1 δXi

is the empirical distribution of the sample X1, . . . , Xn.

In the talk, I will prove the following result:
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Theorem 0.2 (Theorem 3.1 in [6]). Assume k ≤ 1, then

E
[
Dk(Pθ̂, P

0)
]
≤ inf

θ∈Θ
Dk(Pθ, P

0) +
2√
n
.

The fact that there are no assumptions on P 0 nor on M = (Pθ, θ ∈ Θ) in the theorem
is not due to lack of space: this is actually a nice feature of θ̂! Variants of Theorem 0.2,
including a bound that holds with large probability rather than in expectation, can be
found in [5, 6].

Various topics on θ̂ will be covered in this talk:

• the MMD distance can be written in terms of expectations, and thus, the
minimization in Definition 0.1 can be done with a stochastic gradient method.
Details are discussed in [5, 7].

• Theorem 1 leads to convergence: if the model is well-specified, P 0 ∈ M, then
E[Dk(Pθ̂, P

0)] ≤ 2/
√
n → 0 when n → ∞. It also leads to robustness as defined

by Huber: if P 0 = (1 − ε)Pθ0 + εQ for an arbitrary contamination Q and a small
ε, then E[Dk(Pθ̂, P

0)] ≤ 4ε + 2/
√
n. This is proven in [7], where we also prove

more difficult robustness results under adversarial contamination of the data.
• the asymptotic normality of θ̂ is studied in [5] (this requires assumptions).
• an extention of Theorem 0.2 to non-i.i.d. observations (time series) is provided

in [7], under a new mixing condition. We also prove that this mixing condition
is less restrictive than the standard β-mixing condition.

• the term 2/
√
n in Theorem 0.2 cannot be improved in general. However, under

assumptions on the variance of P 0, it can actually be improved: variance-aware
versions of Theorem 0.2 are proven in [14].

• we can define Bayesian-flavored estimators by using the MMD to define a pseudo-
likelihood. We studied such estimators in [7] and proved their convergence using
tools from the PAC-Bayes theory [1]. Other Bayesian-inspired variants of θ̂ are
based on sampling [8] and Approximate Bayesian Computation or ABC [10].

• this estimation strategy was successfully implemented in a wide range of
applications: generative artificial intelligence [9], quantisation and
clustering [13], estimation of copulas [2], estimation of parameters in stochastic
PDEs [5] etc.

A large part of the talk will be dedicated to parametric regression (linear, or not). In
this case, the observations are pairs input-output: Xi = (Zi, Yi). Theorem 0.2 guarantees
that we can estimate the joint distribution of these pairs. But this is not relevant in
regression, where the objective is rather the estimation of the conditional distribution of
Yi given Zi.

The problem is that, while the theory of KME looks simple and elegant, a rigorous
definition of conditional KME turns out to be far more difficult and cumbersome! We
refer the reader to [12] for a recent account and a general approach to solve the problem.

In our recent paper [3], we proved that, in standard regression models: linear
regression with Gaussian noise, logistic regression, Poisson regression, etc., the
conditions for the existence of conditional KMEs are met. This can be used to define
consistent and robust estimation of the regression parameters in the spirit of
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Definition 0.1 above. These estimators turn out to perform extremely when compared
to existing robust regression procedures.
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